Course-JavaScript/js-oop.js
Alex A. Naanou 0c922146f6 reworking type docs...
Signed-off-by: Alex A. Naanou <alex.nanou@gmail.com>
2023-06-01 16:53:25 +03:00

739 lines
19 KiB
JavaScript
Executable File

/**********************************************************************
*
* The basics of JavaScript OOP
*
*
**********************************************************************/
/*********************************************************************/
//
// The basic prototype inheritance
// -------------------------------
//
// First we'll create a basic object a
var a = {
x: 1,
y: 2,
}
// Then we will create a new object using 'a' as a "base"
var b = Object.create(a)
b.z = 3
// Another way to do this:
var b = {
__proto__: a,
z: 3,
}
// The object 'b' now has both access to it's own attributes ('z') and
// attributes of 'a' ('x' and 'y')
b.x // -> 1
b.z // -> 3
// What we see is that if the attribute is not found in the current
// object the next object is checked, and so on, this next object is
// called "prototype".
// These prototype chains can be of any length.
// Cycles in prototype chains are not allowed, see note further down for
// an example.
//
// Note that this works for reading (and mutating) attributes, but when
// writing or deleting we are affecting ONLY the local object and
// attributes explicitly defined in it, or its' "own" attributes.
b.x = 321
b.x // -> 321
a.x // -> 1
// Notice also that a.x is no longer visible from 'b', this is called
// "shadowing", we say: a.x is shadowed by b.x, now let us delete 'x'
// from 'b' to reveal the shadowed a.x
delete b.x
b.x // -> 1
// But, trying to delete .x from 'b' again will have no effect, this is
// because .x no longer exists in 'b'
delete b.x
b.x // -> 1
// Now back to the mechanism that makes all of this work...
//
// First we'll try couple of easy ways to see the local and non-local
// sets of attributes:
// show local or "own" only attribute names (keys)...
Object.keys(b) // -> z
// show all accessible keys...
for(var k in b){
console.log(k) }
// -> x, y, z
// Another way to test if the attribute is own/local
b.hasOwnProperty('z') // -> true
b.hasOwnProperty('x') // -> false
// What happens under the hood is very simple: b references it's
// "prototype" via the .__proto__ attribute:
b.__proto__ === a // -> true
// We can read/set this special attribute just like any other attribute
// on most systems.
//
// NOTE: we did not see .__proto__ in the list of accessible attributes
// because it is a special attribute (property), it is implemented
// internally and is not enumerable.
// NOTE: cyclic prototype chains are actively not allowed, e.g. creating
// a chain like the following will fail:
// var a = {}
// var b = Object.creating(a)
// a.__proto__ = b
//
//
// Thus, we could define our own equivalent to Object.create(..) like
// this:
function clone(from){
return {
__proto__: from,
}
}
var c = clone(b)
// Out of curiosity let's see if .__proto__ is defined on a basic object
var x = {}
x.__proto__ // -> {}
// Turns out it is, and it points to Object's prototype
x.__proto__ === Object.prototype
// -> true
// We will discuss what this means and how we can use this in the next
// sections...
//
// As a side note, Object.prototype is the "root" most object in
// JavaScript and usually is "terminated" with null, i.e.:
Object.prototype.__proto__ === null
// We'll also need this a bit later...
//
// And can create an object with a null prototype like this:
var raw_obj = Object.create(null)
var raw_obj = clone(null)
// or manually...
var raw_obj = {}
raw_obj.__proto__ = null
// These "raw" objects differ from normal objects in that they do not
// inherit any interface methods, defined in the Object, like the
// .hasOwnProperty(..) we used above, this can be useful in some cases.
// The Constructor Mechanism
// -------------------------
//
// JavaScript provides a second, complementary mechanism to inherit
// attributes, it resembles the class/object relationship in languages
// like C++ but this resemblance is on the surface only, as it still
// uses the same prototype mechanism as basis, as described above.
//
// We will start by creating a "constructor":
function A(){
this.x = 1
this.y = 2
}
// Technically a constructor is just a function, what makes it a
// "constructor" is only how we use it...
var a = new A()
// The above aproach has one rather big flaw -- if called without new
// it will modify the root contect (i.e. window or global)
// A safer way to define a constructor:
function A(){
return {
__proto__: A.prototype,
x: 1,
y: 2,
}
}
var a = new A()
var a = A()
// XXX a way to check if we are running in a new context...
function A(){
var obj = this instanceof A ?
this
: { __proto__: A.prototype }
obj.x = 1
obj.y = 2
return obj
}
// Some terminology:
// - in the above use-case 'A' is called a constructor,
// - the object returned by new is called an "instance" (in this case
// assigned to 'a'),
// - the attributes set by the constructor (x and y) are called
// "instance attributes" and are not shared (obviously) between
// different instances, rather they are "constructed" for each
// instance independently.
//
//
// Let's look in more detail at what 'new' does here:
// 1) creates an empty object
// 2) sets a bunch of attributes on it, we'll skim this part for now
// 3) passes the new object to the constructor via 'this'
// 4) after the constructor finishes, this object is returned
//
// We could write a simplified equivalent function:
function construct(func){
var obj = {}
func.apply(obj)
return obj
}
var b = construct(A)
// But at this point this all looks like all we did is move the attribute
// definition from a literal object notation into a constructor function,
// effectively adding complexity.
// And now instead of "inheriting" and reusing attributes we make a new
// set for each individual instance.
// So hat are we getting back from this?
//
// To answer this question we will need to look deeper under the hood,
// specifically at a couple of special attributes:
// we saw this one before...
a.__proto__ // -> {}
// this points back to the constructor...
a.constructor // -> [Function A]
// These are what makes this fun, lets write a more complete 'new'
// re-implementation:
function construct(func, args){
var obj = {}
// set some special attributes...
obj.__proto__ = func.prototype
// call the constructor...
var res = func.apply(obj, args)
// handle the return value of the constructor...
if(res instanceof Object){
return res
}
return obj
}
var b = construct(A)
// There are two important things we added here:
// 1) we now explicitly use the .prototype attribute that we saw earlier
// 2) we return the resulting object in a more complicated way
//
// Each time a function is created in JavaScript it will get a new empty
// object assigned to it's .prototype attribute.
// On the function level, this is rarely used, but this object is very
// useful when the function is used as a constructor.
//
// As we can see from the code above, the resulting object's .__proto__
// points to the constructor's .prototype, this means not-own the
// attributes accessed via that object are resolved to the prototype.
// In the default case this is true, but in general it's a bit more
// flexible, we'll see this in the next section.
//
// And the way we handle the return value makes it possible for the
// constructor to return a custom object rather than use the one
// provided in its "this" by new.
//
//
// So if we add stuff to the constructor's .prototype they should be
// accessible from the object
// the following three lines actually add attributes to the same
// object...
A.prototype.k = 123
a.constructor.prototype.l = 321
a.__proto__.m = 333
// for illustration, we'll set some object own attributes
a.k = 'a!'
b.k = 'b!'
a.k // -> 'a!'
a.l // -> 321
a.m // -> 333
// These values are accessible from all objects constructed by A since
// all of them point to A with both the .constructor and .__proto__
// attributes
b.k // -> 'b!'
b.l // -> 321
b.m // -> 333
// This works for any constructor, including built-in constructors and
// since name resolution happens in runtime all instances will get the
// new functionality live, as it is defined:
// a "class method", like .keys(..) but return all available keys...
Object.allKeys = function(o){
var res = []
for(var k in o){
res.push(k)
}
return res
}
// now make these into real methods we can use from any object...
Object.prototype.keys = function(){ return Object.keys(this) }
Object.prototype.allKeys = function(){ return Object.allKeys(this) }
b.keys() // -> ['k']
b.allKeys() // -> ['x', 'y', 'k', 'l', 'm']
// NOTE: x and y are set in the A constructor
// above...
// Inheritance chains
// ------------------
//
// In both inheritance mechanisms, each step is checked via the same
// rules recursively, this makes it possible to build inheritance chains
//
// We will create a chain:
//
// c -> b -> a
//
var a = {x: 1}
var b = Object.create(a)
b.y = 2
var c = Object.create(b)
c.x // -> 1
c.y // -> 2
// Creating an inheritance chain via the constructor mechanism is a bit
// more involved, and there are multiple ways to do this...
//
// Here we will create a similar chain to the above for comparison:
//
// C -> B -> A
//
function A(){}
A.prototype.x = 1
function B(){}
// NOTE: if this is done after an instance is created, that instances'
// .__proto__ will keep referencing the old prototype object.
// see the next constructor for a way around this...
B.prototype = Object.create(A.prototype)
// NOTE: we'll need to overwire this to B as the value inherited from
// A.prototype will obviously be A...
B.prototype.constructor = B
B.prototype.y = 2
function C(){}
// NOTE: this is safer than Object.create as it does not overwrite
// the original C.prototype and thus will affect all existing
// instances of C, if any were created before this point...
// NOTE: the C.prototype.constructor field is already set correctly
// here as we are not replacing the object created by the
// system...
C.prototype.__proto__ = B.prototype
var c = new C()
c.x // -> 1
c.y // -> 2
// Checking inheritance (instanceof)
// ---------------------------------
//
// An object is considered an instance of its' constructor and all other
// constructors in the inheritance chain.
c instanceof C // -> true
c instanceof B // -> true
c instanceof A // -> true
c instanceof Object // -> true
c instanceof function X(){}
// -> false
// This also works for our manually created objects
var cc = construct(C)
cc instanceof C
// But this will not work outside the constructor model, i.e. if the right
// parameter is not a function.
var x = {}
var y = Object.create(x)
try{
// this will fail as x is not a function...
y instanceof x
} catch(e){
console.log('error')
}
// Again to make this simpler to understand we will implement our own
// equivalent to instanceof:
function isInstanceOf(obj, proto){
return obj === Function && proto === Function ? true
: (isInstanceOf(proto, Function)
&& (obj.__proto__ === proto.prototype ? true
// NOTE: the last in this chain is Object.prototype.__proto__
// and it is null
: obj.__proto__ == null ? false
// go down the chain...
: isInstanceOf(obj.__proto__, proto)))
}
isInstanceOf(c, C) // -> true
isInstanceOf(c, B) // -> true
isInstanceOf(c, A) // -> true
isInstanceOf(c, Object)
// -> true
isInstanceOf(c, function X(){})
// -> false
// Also take note of the following cases:
Object instanceof Function
// -> true
Function instanceof Object
// -> true
Object instanceof Object
// -> true
Function instanceof Function
// -> true
// Now, the fact that a function object is both a function and an object
// should be obvious:
function f(){}
f instanceof Function
// -> true
f instanceof Object
// -> true
// Checking type (typeof)
// ----------------------
//
// This section is mainly here for completeness and to address several
// gotcha's.
//
// What typeof returns in JavaScript is not too useful and sometimes
// even odd...
typeof c // -> 'object'
// This might differ from implementation to implementation but
// essentially the main thing typeof is useful for is distinguishing
// between objects and non-objects (numbers, strings, ...etc.)
// non-objects
typeof 1 // -> 'number'
typeof Infinity // -> 'number'
typeof 'a' // -> 'string'
typeof undefined // -> 'undefined'
// objects
typeof {} // -> 'object'
typeof [] // -> 'object'
// the odd stuff...
typeof NaN // -> 'number'
typeof null // -> 'object'
typeof function(){} // -> 'function'
// NOTE: the "non-object" term is not entirely correct here, they can
// be called "frozen" objects in ES5 speak, but that is outside the
// scope of this document.
// Methods and the value of 'this'
// -------------------------------
//
// A "method" is simply an attribute that references a function.
function f(){
return this
}
var o = { f: f }
// Thus we call the attribute .f of object o a "method" of object o.
//
//
// 'this' is a reserved word and is available in the context of a function
// execution, not just in methods, but what value it references depends
// on how that function is called...
// 'this' is mostly useful and used in methods.
//
// A simple way to think about it is that 'this' always points to the
// "context" of the function call.
//
// There are three distinct cases here:
// - function call / implicit context
// - new call / implicit context
// - method call / explicit context
//
//
// 1) function call (implicit)
// In the first case the context is either global/window/module which
// ever is the root context in a given implementation or undefined in
// ES5 strict mode
f() // -> window/global/module
// Strict mode example:
//
function strict_f(){
'use strict'
return this
}
strict_f() // -> undefined
// 2) new call (implicit)
// Here as we have discussed before, 'this' is assigned a new object
// with some special attributes set.
new f() // -> {}
// 3) method call (explicit)
// In the method call context this is set to the object from which the
// method is called, i.e. the object left of the '.' or [ ] attribute
// access operators...
o.f() // -> o
o['f']() // -> o
// ...or an explicitly passed to .call(..) / .apply(..) function methods
f.call(o) // -> o
f.apply(o) // -> o
// ES5 also defines a third way to make method calls: Function.bind which
// creates a new function where 'this' is bound to the supplied object
var ff = f.bind(o)
ff() // -> o
// NOTE: all of the above 5 calls are the same.
// NOTE: the resulting from .bind(..) function will ignore subsequent
// .bind(..), .call(..) and .apply(..) method calls and 'this' will
// always be the original bound object.
// NOTE: the difference between strict and "quirks" modes is in the
// following:
// In quirks mode a function call is always done in the root
// context, it's like implicitly calling a method of the global
// object:
// f() === window.f()
// // -> true
// In strict mode these are two different things, a function call
// is done without a context ('this' is undefined) while calling
// the same function via the global object is essentially a method
// call, setting 'this' to what is to the left of the attribute
// access operator:
// strict_f() !== window.strict_f()
// // -> true
// Common use-cases
// ----------------
//
// Several common object construction patterns:
//
// * Literal objects...
var LiteralObject = {
x: 1,
method: function(a){
return this.x * a
},
}
var o = Object.create(LiteralObject)
// Advantages:
// - simple and non-verbose
// - fully introspective
// - flexible and non-restrictive
// - supports basic inheritance
//
// Disadvantages:
// - needs a seporate manual instance construction stage (no
// constructor)
// - does not provide support for some of the base language
// infrastructure, like type and instance checking
// * Constructor object...
function ConstructorObject(){
this.x = 1
}
ConstructorObject.prototype.method = function(a){
return this.x * a
}
var o = new ConstructorObject()
// Advantages:
// - flexible
// - fully introspective
// - supports language mechanisms for type and instance checking
// - supports inheritance
//
// Disadvantages:
// - more complicated than the literal notation
// - needs manual work to support inheritance, making it more even
// complicated
// - does not provide support for multiple inheritance
// * Walled objects / Walled data
function ObjectConstructor(){
// private data and functions...
var x = 1
// the actual object defining both public data and methods...
return {
y: 2,
method: function(a){
// use the private and public data...
return this.y * x * a
},
}
}
var o = ObjectConstructor()
// Advantages:
// - supports hiding data from the user
//
// Disadvantages:
// - non-introspective
// - added complexity
// - makes inheritance and extending very complicated and in some
// cases impossible
// - copies code rather than reuses it
// - does not provide support for some of the base language
// infrastructure, like type and instance checking
//
// NOTE: mostly inspired by languages supporting internal strict data
// context restrictions (e.g. private data) from the C++ family,
// e.g. C++, Java, C# and friends...
// NOTE: this style is called "defensive" coding by some sources,
// including this one ;)
// NOTE: this approach has it's use-cases, mainly in code dealing with
// security, though general use of this pattern is not recommended
// as it adds lots of limitations and complexity without giving
// back any real benefits in the general case.
/*********************************************************************/
//
// NOTE: several topics available in ES5 are intentionally excluded
// from this document, these include:
// - properties
// - freezing/sealing
// The general motivation for this is simple: they introduce
// complexity and restrictions without giving any real benefits
// in the common case.
//
// Cases where these features "might" be useful are:
// - language design / language extending
// - library code
// Neither of these is a common case and the use of these features
// for library code is debatable.
//
//
/**********************************************************************
* vim:set ts=4 sw=4 : */