mirror of
				https://github.com/flynx/PortableMag.git
				synced 2025-10-30 19:40:12 +00:00 
			
		
		
		
	
		
			
	
	
		
			1698 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
		
		
			
		
	
	
			1698 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			JavaScript
		
	
	
	
	
	
|  | /* | ||
|  |  * Port of a script by Masanao Izumo. | ||
|  |  * | ||
|  |  * Only changes : wrap all the variables in a function and add the  | ||
|  |  * main function to JSZip (DEFLATE compression method). | ||
|  |  * Everything else was written by M. Izumo. | ||
|  |  * | ||
|  |  * Original code can be found here: http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
 | ||
|  |  */ | ||
|  | 
 | ||
|  | if(!JSZip) { | ||
|  |    throw "JSZip not defined"; | ||
|  | } | ||
|  | 
 | ||
|  | /* | ||
|  |  * Original: | ||
|  |  *   http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
 | ||
|  |  */ | ||
|  | 
 | ||
|  | (function(){ | ||
|  | 
 | ||
|  | /* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp> | ||
|  |  * Version: 1.0.1 | ||
|  |  * LastModified: Dec 25 1999 | ||
|  |  */ | ||
|  | 
 | ||
|  | /* Interface: | ||
|  |  * data = zip_deflate(src); | ||
|  |  */ | ||
|  | 
 | ||
|  | /* constant parameters */ | ||
|  | var zip_WSIZE = 32768;		// Sliding Window size
 | ||
|  | var zip_STORED_BLOCK = 0; | ||
|  | var zip_STATIC_TREES = 1; | ||
|  | var zip_DYN_TREES    = 2; | ||
|  | 
 | ||
|  | /* for deflate */ | ||
|  | var zip_DEFAULT_LEVEL = 6; | ||
|  | var zip_FULL_SEARCH = true; | ||
|  | var zip_INBUFSIZ = 32768;	// Input buffer size
 | ||
|  | var zip_INBUF_EXTRA = 64;	// Extra buffer
 | ||
|  | var zip_OUTBUFSIZ = 1024 * 8; | ||
|  | var zip_window_size = 2 * zip_WSIZE; | ||
|  | var zip_MIN_MATCH = 3; | ||
|  | var zip_MAX_MATCH = 258; | ||
|  | var zip_BITS = 16; | ||
|  | // for SMALL_MEM
 | ||
|  | var zip_LIT_BUFSIZE = 0x2000; | ||
|  | var zip_HASH_BITS = 13; | ||
|  | // for MEDIUM_MEM
 | ||
|  | // var zip_LIT_BUFSIZE = 0x4000;
 | ||
|  | // var zip_HASH_BITS = 14;
 | ||
|  | // for BIG_MEM
 | ||
|  | // var zip_LIT_BUFSIZE = 0x8000;
 | ||
|  | // var zip_HASH_BITS = 15;
 | ||
|  | if(zip_LIT_BUFSIZE > zip_INBUFSIZ) | ||
|  |     alert("error: zip_INBUFSIZ is too small"); | ||
|  | if((zip_WSIZE<<1) > (1<<zip_BITS)) | ||
|  |     alert("error: zip_WSIZE is too large"); | ||
|  | if(zip_HASH_BITS > zip_BITS-1) | ||
|  |     alert("error: zip_HASH_BITS is too large"); | ||
|  | if(zip_HASH_BITS < 8 || zip_MAX_MATCH != 258) | ||
|  |     alert("error: Code too clever"); | ||
|  | var zip_DIST_BUFSIZE = zip_LIT_BUFSIZE; | ||
|  | var zip_HASH_SIZE = 1 << zip_HASH_BITS; | ||
|  | var zip_HASH_MASK = zip_HASH_SIZE - 1; | ||
|  | var zip_WMASK = zip_WSIZE - 1; | ||
|  | var zip_NIL = 0; // Tail of hash chains
 | ||
|  | var zip_TOO_FAR = 4096; | ||
|  | var zip_MIN_LOOKAHEAD = zip_MAX_MATCH + zip_MIN_MATCH + 1; | ||
|  | var zip_MAX_DIST = zip_WSIZE - zip_MIN_LOOKAHEAD; | ||
|  | var zip_SMALLEST = 1; | ||
|  | var zip_MAX_BITS = 15; | ||
|  | var zip_MAX_BL_BITS = 7; | ||
|  | var zip_LENGTH_CODES = 29; | ||
|  | var zip_LITERALS =256; | ||
|  | var zip_END_BLOCK = 256; | ||
|  | var zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES; | ||
|  | var zip_D_CODES = 30; | ||
|  | var zip_BL_CODES = 19; | ||
|  | var zip_REP_3_6 = 16; | ||
|  | var zip_REPZ_3_10 = 17; | ||
|  | var zip_REPZ_11_138 = 18; | ||
|  | var zip_HEAP_SIZE = 2 * zip_L_CODES + 1; | ||
|  | var zip_H_SHIFT = parseInt((zip_HASH_BITS + zip_MIN_MATCH - 1) / | ||
|  | 			   zip_MIN_MATCH); | ||
|  | 
 | ||
|  | /* variables */ | ||
|  | var zip_free_queue; | ||
|  | var zip_qhead, zip_qtail; | ||
|  | var zip_initflag; | ||
|  | var zip_outbuf = null; | ||
|  | var zip_outcnt, zip_outoff; | ||
|  | var zip_complete; | ||
|  | var zip_window; | ||
|  | var zip_d_buf; | ||
|  | var zip_l_buf; | ||
|  | var zip_prev; | ||
|  | var zip_bi_buf; | ||
|  | var zip_bi_valid; | ||
|  | var zip_block_start; | ||
|  | var zip_ins_h; | ||
|  | var zip_hash_head; | ||
|  | var zip_prev_match; | ||
|  | var zip_match_available; | ||
|  | var zip_match_length; | ||
|  | var zip_prev_length; | ||
|  | var zip_strstart; | ||
|  | var zip_match_start; | ||
|  | var zip_eofile; | ||
|  | var zip_lookahead; | ||
|  | var zip_max_chain_length; | ||
|  | var zip_max_lazy_match; | ||
|  | var zip_compr_level; | ||
|  | var zip_good_match; | ||
|  | var zip_nice_match; | ||
|  | var zip_dyn_ltree; | ||
|  | var zip_dyn_dtree; | ||
|  | var zip_static_ltree; | ||
|  | var zip_static_dtree; | ||
|  | var zip_bl_tree; | ||
|  | var zip_l_desc; | ||
|  | var zip_d_desc; | ||
|  | var zip_bl_desc; | ||
|  | var zip_bl_count; | ||
|  | var zip_heap; | ||
|  | var zip_heap_len; | ||
|  | var zip_heap_max; | ||
|  | var zip_depth; | ||
|  | var zip_length_code; | ||
|  | var zip_dist_code; | ||
|  | var zip_base_length; | ||
|  | var zip_base_dist; | ||
|  | var zip_flag_buf; | ||
|  | var zip_last_lit; | ||
|  | var zip_last_dist; | ||
|  | var zip_last_flags; | ||
|  | var zip_flags; | ||
|  | var zip_flag_bit; | ||
|  | var zip_opt_len; | ||
|  | var zip_static_len; | ||
|  | var zip_deflate_data; | ||
|  | var zip_deflate_pos; | ||
|  | 
 | ||
|  | /* objects (deflate) */ | ||
|  | 
 | ||
|  | var zip_DeflateCT = function() { | ||
|  |     this.fc = 0; // frequency count or bit string
 | ||
|  |     this.dl = 0; // father node in Huffman tree or length of bit string
 | ||
|  | } | ||
|  | 
 | ||
|  | var zip_DeflateTreeDesc = function() { | ||
|  |     this.dyn_tree = null;	// the dynamic tree
 | ||
|  |     this.static_tree = null;	// corresponding static tree or NULL
 | ||
|  |     this.extra_bits = null;	// extra bits for each code or NULL
 | ||
|  |     this.extra_base = 0;	// base index for extra_bits
 | ||
|  |     this.elems = 0;		// max number of elements in the tree
 | ||
|  |     this.max_length = 0;	// max bit length for the codes
 | ||
|  |     this.max_code = 0;		// largest code with non zero frequency
 | ||
|  | } | ||
|  | 
 | ||
|  | /* Values for max_lazy_match, good_match and max_chain_length, depending on | ||
|  |  * the desired pack level (0..9). The values given below have been tuned to | ||
|  |  * exclude worst case performance for pathological files. Better values may be | ||
|  |  * found for specific files. | ||
|  |  */ | ||
|  | var zip_DeflateConfiguration = function(a, b, c, d) { | ||
|  |     this.good_length = a; // reduce lazy search above this match length
 | ||
|  |     this.max_lazy = b;    // do not perform lazy search above this match length
 | ||
|  |     this.nice_length = c; // quit search above this match length
 | ||
|  |     this.max_chain = d; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_DeflateBuffer = function() { | ||
|  |     this.next = null; | ||
|  |     this.len = 0; | ||
|  |     this.ptr = new Array(zip_OUTBUFSIZ); | ||
|  |     this.off = 0; | ||
|  | } | ||
|  | 
 | ||
|  | /* constant tables */ | ||
|  | var zip_extra_lbits = new Array( | ||
|  |     0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0); | ||
|  | var zip_extra_dbits = new Array( | ||
|  |     0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13); | ||
|  | var zip_extra_blbits = new Array( | ||
|  |     0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7); | ||
|  | var zip_bl_order = new Array( | ||
|  |     16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15); | ||
|  | var zip_configuration_table = new Array( | ||
|  | 	new zip_DeflateConfiguration(0,    0,   0,    0), | ||
|  | 	new zip_DeflateConfiguration(4,    4,   8,    4), | ||
|  | 	new zip_DeflateConfiguration(4,    5,  16,    8), | ||
|  | 	new zip_DeflateConfiguration(4,    6,  32,   32), | ||
|  | 	new zip_DeflateConfiguration(4,    4,  16,   16), | ||
|  | 	new zip_DeflateConfiguration(8,   16,  32,   32), | ||
|  | 	new zip_DeflateConfiguration(8,   16, 128,  128), | ||
|  | 	new zip_DeflateConfiguration(8,   32, 128,  256), | ||
|  | 	new zip_DeflateConfiguration(32, 128, 258, 1024), | ||
|  | 	new zip_DeflateConfiguration(32, 258, 258, 4096)); | ||
|  | 
 | ||
|  | 
 | ||
|  | /* routines (deflate) */ | ||
|  | 
 | ||
|  | var zip_deflate_start = function(level) { | ||
|  |     var i; | ||
|  | 
 | ||
|  |     if(!level) | ||
|  | 	level = zip_DEFAULT_LEVEL; | ||
|  |     else if(level < 1) | ||
|  | 	level = 1; | ||
|  |     else if(level > 9) | ||
|  | 	level = 9; | ||
|  | 
 | ||
|  |     zip_compr_level = level; | ||
|  |     zip_initflag = false; | ||
|  |     zip_eofile = false; | ||
|  |     if(zip_outbuf != null) | ||
|  | 	return; | ||
|  | 
 | ||
|  |     zip_free_queue = zip_qhead = zip_qtail = null; | ||
|  |     zip_outbuf = new Array(zip_OUTBUFSIZ); | ||
|  |     zip_window = new Array(zip_window_size); | ||
|  |     zip_d_buf = new Array(zip_DIST_BUFSIZE); | ||
|  |     zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA); | ||
|  |     zip_prev = new Array(1 << zip_BITS); | ||
|  |     zip_dyn_ltree = new Array(zip_HEAP_SIZE); | ||
|  |     for(i = 0; i < zip_HEAP_SIZE; i++) | ||
|  | 	zip_dyn_ltree[i] = new zip_DeflateCT(); | ||
|  |     zip_dyn_dtree = new Array(2*zip_D_CODES+1); | ||
|  |     for(i = 0; i < 2*zip_D_CODES+1; i++) | ||
|  | 	zip_dyn_dtree[i] = new zip_DeflateCT(); | ||
|  |     zip_static_ltree = new Array(zip_L_CODES+2); | ||
|  |     for(i = 0; i < zip_L_CODES+2; i++) | ||
|  | 	zip_static_ltree[i] = new zip_DeflateCT(); | ||
|  |     zip_static_dtree = new Array(zip_D_CODES); | ||
|  |     for(i = 0; i < zip_D_CODES; i++) | ||
|  | 	zip_static_dtree[i] = new zip_DeflateCT(); | ||
|  |     zip_bl_tree = new Array(2*zip_BL_CODES+1); | ||
|  |     for(i = 0; i < 2*zip_BL_CODES+1; i++) | ||
|  | 	zip_bl_tree[i] = new zip_DeflateCT(); | ||
|  |     zip_l_desc = new zip_DeflateTreeDesc(); | ||
|  |     zip_d_desc = new zip_DeflateTreeDesc(); | ||
|  |     zip_bl_desc = new zip_DeflateTreeDesc(); | ||
|  |     zip_bl_count = new Array(zip_MAX_BITS+1); | ||
|  |     zip_heap = new Array(2*zip_L_CODES+1); | ||
|  |     zip_depth = new Array(2*zip_L_CODES+1); | ||
|  |     zip_length_code = new Array(zip_MAX_MATCH-zip_MIN_MATCH+1); | ||
|  |     zip_dist_code = new Array(512); | ||
|  |     zip_base_length = new Array(zip_LENGTH_CODES); | ||
|  |     zip_base_dist = new Array(zip_D_CODES); | ||
|  |     zip_flag_buf = new Array(parseInt(zip_LIT_BUFSIZE / 8)); | ||
|  | } | ||
|  | 
 | ||
|  | var zip_deflate_end = function() { | ||
|  |     zip_free_queue = zip_qhead = zip_qtail = null; | ||
|  |     zip_outbuf = null; | ||
|  |     zip_window = null; | ||
|  |     zip_d_buf = null; | ||
|  |     zip_l_buf = null; | ||
|  |     zip_prev = null; | ||
|  |     zip_dyn_ltree = null; | ||
|  |     zip_dyn_dtree = null; | ||
|  |     zip_static_ltree = null; | ||
|  |     zip_static_dtree = null; | ||
|  |     zip_bl_tree = null; | ||
|  |     zip_l_desc = null; | ||
|  |     zip_d_desc = null; | ||
|  |     zip_bl_desc = null; | ||
|  |     zip_bl_count = null; | ||
|  |     zip_heap = null; | ||
|  |     zip_depth = null; | ||
|  |     zip_length_code = null; | ||
|  |     zip_dist_code = null; | ||
|  |     zip_base_length = null; | ||
|  |     zip_base_dist = null; | ||
|  |     zip_flag_buf = null; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_reuse_queue = function(p) { | ||
|  |     p.next = zip_free_queue; | ||
|  |     zip_free_queue = p; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_new_queue = function() { | ||
|  |     var p; | ||
|  | 
 | ||
|  |     if(zip_free_queue != null) | ||
|  |     { | ||
|  | 	p = zip_free_queue; | ||
|  | 	zip_free_queue = zip_free_queue.next; | ||
|  |     } | ||
|  |     else | ||
|  | 	p = new zip_DeflateBuffer(); | ||
|  |     p.next = null; | ||
|  |     p.len = p.off = 0; | ||
|  | 
 | ||
|  |     return p; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_head1 = function(i) { | ||
|  |     return zip_prev[zip_WSIZE + i]; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_head2 = function(i, val) { | ||
|  |     return zip_prev[zip_WSIZE + i] = val; | ||
|  | } | ||
|  | 
 | ||
|  | /* put_byte is used for the compressed output, put_ubyte for the | ||
|  |  * uncompressed output. However unlzw() uses window for its | ||
|  |  * suffix table instead of its output buffer, so it does not use put_ubyte | ||
|  |  * (to be cleaned up). | ||
|  |  */ | ||
|  | var zip_put_byte = function(c) { | ||
|  |     zip_outbuf[zip_outoff + zip_outcnt++] = c; | ||
|  |     if(zip_outoff + zip_outcnt == zip_OUTBUFSIZ) | ||
|  | 	zip_qoutbuf(); | ||
|  | } | ||
|  | 
 | ||
|  | /* Output a 16 bit value, lsb first */ | ||
|  | var zip_put_short = function(w) { | ||
|  |     w &= 0xffff; | ||
|  |     if(zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) { | ||
|  | 	zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff); | ||
|  | 	zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8); | ||
|  |     } else { | ||
|  | 	zip_put_byte(w & 0xff); | ||
|  | 	zip_put_byte(w >>> 8); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Insert string s in the dictionary and set match_head to the previous head | ||
|  |  * of the hash chain (the most recent string with same hash key). Return | ||
|  |  * the previous length of the hash chain. | ||
|  |  * IN  assertion: all calls to to INSERT_STRING are made with consecutive | ||
|  |  *    input characters and the first MIN_MATCH bytes of s are valid | ||
|  |  *    (except for the last MIN_MATCH-1 bytes of the input file). | ||
|  |  */ | ||
|  | var zip_INSERT_STRING = function() { | ||
|  |     zip_ins_h = ((zip_ins_h << zip_H_SHIFT) | ||
|  | 		 ^ (zip_window[zip_strstart + zip_MIN_MATCH - 1] & 0xff)) | ||
|  | 	& zip_HASH_MASK; | ||
|  |     zip_hash_head = zip_head1(zip_ins_h); | ||
|  |     zip_prev[zip_strstart & zip_WMASK] = zip_hash_head; | ||
|  |     zip_head2(zip_ins_h, zip_strstart); | ||
|  | } | ||
|  | 
 | ||
|  | /* Send a code of the given tree. c and tree must not have side effects */ | ||
|  | var zip_SEND_CODE = function(c, tree) { | ||
|  |     zip_send_bits(tree[c].fc, tree[c].dl); | ||
|  | } | ||
|  | 
 | ||
|  | /* Mapping from a distance to a distance code. dist is the distance - 1 and | ||
|  |  * must not have side effects. dist_code[256] and dist_code[257] are never | ||
|  |  * used. | ||
|  |  */ | ||
|  | var zip_D_CODE = function(dist) { | ||
|  |     return (dist < 256 ? zip_dist_code[dist] | ||
|  | 	    : zip_dist_code[256 + (dist>>7)]) & 0xff; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Compares to subtrees, using the tree depth as tie breaker when | ||
|  |  * the subtrees have equal frequency. This minimizes the worst case length. | ||
|  |  */ | ||
|  | var zip_SMALLER = function(tree, n, m) { | ||
|  |     return tree[n].fc < tree[m].fc || | ||
|  |       (tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * read string data | ||
|  |  */ | ||
|  | var zip_read_buff = function(buff, offset, n) { | ||
|  |     var i; | ||
|  |     for(i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++) | ||
|  | 	buff[offset + i] = | ||
|  | 	    zip_deflate_data.charCodeAt(zip_deflate_pos++) & 0xff; | ||
|  |     return i; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Initialize the "longest match" routines for a new file | ||
|  |  */ | ||
|  | var zip_lm_init = function() { | ||
|  |     var j; | ||
|  | 
 | ||
|  |     /* Initialize the hash table. */ | ||
|  |     for(j = 0; j < zip_HASH_SIZE; j++) | ||
|  | //	zip_head2(j, zip_NIL);
 | ||
|  | 	zip_prev[zip_WSIZE + j] = 0; | ||
|  |     /* prev will be initialized on the fly */ | ||
|  | 
 | ||
|  |     /* Set the default configuration parameters: | ||
|  |      */ | ||
|  |     zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy; | ||
|  |     zip_good_match     = zip_configuration_table[zip_compr_level].good_length; | ||
|  |     if(!zip_FULL_SEARCH) | ||
|  | 	zip_nice_match = zip_configuration_table[zip_compr_level].nice_length; | ||
|  |     zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain; | ||
|  | 
 | ||
|  |     zip_strstart = 0; | ||
|  |     zip_block_start = 0; | ||
|  | 
 | ||
|  |     zip_lookahead = zip_read_buff(zip_window, 0, 2 * zip_WSIZE); | ||
|  |     if(zip_lookahead <= 0) { | ||
|  | 	zip_eofile = true; | ||
|  | 	zip_lookahead = 0; | ||
|  | 	return; | ||
|  |     } | ||
|  |     zip_eofile = false; | ||
|  |     /* Make sure that we always have enough lookahead. This is important | ||
|  |      * if input comes from a device such as a tty. | ||
|  |      */ | ||
|  |     while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) | ||
|  | 	zip_fill_window(); | ||
|  | 
 | ||
|  |     /* If lookahead < MIN_MATCH, ins_h is garbage, but this is | ||
|  |      * not important since only literal bytes will be emitted. | ||
|  |      */ | ||
|  |     zip_ins_h = 0; | ||
|  |     for(j = 0; j < zip_MIN_MATCH - 1; j++) { | ||
|  | //      UPDATE_HASH(ins_h, window[j]);
 | ||
|  | 	zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Set match_start to the longest match starting at the given string and | ||
|  |  * return its length. Matches shorter or equal to prev_length are discarded, | ||
|  |  * in which case the result is equal to prev_length and match_start is | ||
|  |  * garbage. | ||
|  |  * IN assertions: cur_match is the head of the hash chain for the current | ||
|  |  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 | ||
|  |  */ | ||
|  | var zip_longest_match = function(cur_match) { | ||
|  |     var chain_length = zip_max_chain_length; // max hash chain length
 | ||
|  |     var scanp = zip_strstart; // current string
 | ||
|  |     var matchp;		// matched string
 | ||
|  |     var len;		// length of current match
 | ||
|  |     var best_len = zip_prev_length;	// best match length so far
 | ||
|  | 
 | ||
|  |     /* Stop when cur_match becomes <= limit. To simplify the code, | ||
|  |      * we prevent matches with the string of window index 0. | ||
|  |      */ | ||
|  |     var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL); | ||
|  | 
 | ||
|  |     var strendp = zip_strstart + zip_MAX_MATCH; | ||
|  |     var scan_end1 = zip_window[scanp + best_len - 1]; | ||
|  |     var scan_end  = zip_window[scanp + best_len]; | ||
|  | 
 | ||
|  |     /* Do not waste too much time if we already have a good match: */ | ||
|  |     if(zip_prev_length >= zip_good_match) | ||
|  | 	chain_length >>= 2; | ||
|  | 
 | ||
|  | //  Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead");
 | ||
|  | 
 | ||
|  |     do { | ||
|  | //    Assert(cur_match < encoder->strstart, "no future");
 | ||
|  | 	matchp = cur_match; | ||
|  | 
 | ||
|  | 	/* Skip to next match if the match length cannot increase | ||
|  | 	    * or if the match length is less than 2: | ||
|  | 	*/ | ||
|  | 	if(zip_window[matchp + best_len]	!= scan_end  || | ||
|  | 	   zip_window[matchp + best_len - 1]	!= scan_end1 || | ||
|  | 	   zip_window[matchp]			!= zip_window[scanp] || | ||
|  | 	   zip_window[++matchp]			!= zip_window[scanp + 1]) { | ||
|  | 	    continue; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* The check at best_len-1 can be removed because it will be made | ||
|  |          * again later. (This heuristic is not always a win.) | ||
|  |          * It is not necessary to compare scan[2] and match[2] since they | ||
|  |          * are always equal when the other bytes match, given that | ||
|  |          * the hash keys are equal and that HASH_BITS >= 8. | ||
|  |          */ | ||
|  | 	scanp += 2; | ||
|  | 	matchp++; | ||
|  | 
 | ||
|  | 	/* We check for insufficient lookahead only every 8th comparison; | ||
|  |          * the 256th check will be made at strstart+258. | ||
|  |          */ | ||
|  | 	do { | ||
|  | 	} while(zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		zip_window[++scanp] == zip_window[++matchp] && | ||
|  | 		scanp < strendp); | ||
|  | 
 | ||
|  |       len = zip_MAX_MATCH - (strendp - scanp); | ||
|  |       scanp = strendp - zip_MAX_MATCH; | ||
|  | 
 | ||
|  |       if(len > best_len) { | ||
|  | 	  zip_match_start = cur_match; | ||
|  | 	  best_len = len; | ||
|  | 	  if(zip_FULL_SEARCH) { | ||
|  | 	      if(len >= zip_MAX_MATCH) break; | ||
|  | 	  } else { | ||
|  | 	      if(len >= zip_nice_match) break; | ||
|  | 	  } | ||
|  | 
 | ||
|  | 	  scan_end1  = zip_window[scanp + best_len-1]; | ||
|  | 	  scan_end   = zip_window[scanp + best_len]; | ||
|  |       } | ||
|  |     } while((cur_match = zip_prev[cur_match & zip_WMASK]) > limit | ||
|  | 	    && --chain_length != 0); | ||
|  | 
 | ||
|  |     return best_len; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Fill the window when the lookahead becomes insufficient. | ||
|  |  * Updates strstart and lookahead, and sets eofile if end of input file. | ||
|  |  * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 | ||
|  |  * OUT assertions: at least one byte has been read, or eofile is set; | ||
|  |  *    file reads are performed for at least two bytes (required for the | ||
|  |  *    translate_eol option). | ||
|  |  */ | ||
|  | var zip_fill_window = function() { | ||
|  |     var n, m; | ||
|  | 
 | ||
|  |     // Amount of free space at the end of the window.
 | ||
|  |     var more = zip_window_size - zip_lookahead - zip_strstart; | ||
|  | 
 | ||
|  |     /* If the window is almost full and there is insufficient lookahead, | ||
|  |      * move the upper half to the lower one to make room in the upper half. | ||
|  |      */ | ||
|  |     if(more == -1) { | ||
|  | 	/* Very unlikely, but possible on 16 bit machine if strstart == 0 | ||
|  |          * and lookahead == 1 (input done one byte at time) | ||
|  |          */ | ||
|  | 	more--; | ||
|  |     } else if(zip_strstart >= zip_WSIZE + zip_MAX_DIST) { | ||
|  | 	/* By the IN assertion, the window is not empty so we can't confuse | ||
|  |          * more == 0 with more == 64K on a 16 bit machine. | ||
|  |          */ | ||
|  | //	Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM");
 | ||
|  | 
 | ||
|  | //	System.arraycopy(window, WSIZE, window, 0, WSIZE);
 | ||
|  | 	for(n = 0; n < zip_WSIZE; n++) | ||
|  | 	    zip_window[n] = zip_window[n + zip_WSIZE]; | ||
|  |        | ||
|  | 	zip_match_start -= zip_WSIZE; | ||
|  | 	zip_strstart    -= zip_WSIZE; /* we now have strstart >= MAX_DIST: */ | ||
|  | 	zip_block_start -= zip_WSIZE; | ||
|  | 
 | ||
|  | 	for(n = 0; n < zip_HASH_SIZE; n++) { | ||
|  | 	    m = zip_head1(n); | ||
|  | 	    zip_head2(n, m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); | ||
|  | 	} | ||
|  | 	for(n = 0; n < zip_WSIZE; n++) { | ||
|  | 	    /* If n is not on any hash chain, prev[n] is garbage but | ||
|  | 	     * its value will never be used. | ||
|  | 	     */ | ||
|  | 	    m = zip_prev[n]; | ||
|  | 	    zip_prev[n] = (m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); | ||
|  | 	} | ||
|  | 	more += zip_WSIZE; | ||
|  |     } | ||
|  |     // At this point, more >= 2
 | ||
|  |     if(!zip_eofile) { | ||
|  | 	n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more); | ||
|  | 	if(n <= 0) | ||
|  | 	    zip_eofile = true; | ||
|  | 	else | ||
|  | 	    zip_lookahead += n; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Processes a new input file and return its compressed length. This | ||
|  |  * function does not perform lazy evaluationof matches and inserts | ||
|  |  * new strings in the dictionary only for unmatched strings or for short | ||
|  |  * matches. It is used only for the fast compression options. | ||
|  |  */ | ||
|  | var zip_deflate_fast = function() { | ||
|  |     while(zip_lookahead != 0 && zip_qhead == null) { | ||
|  | 	var flush; // set if current block must be flushed
 | ||
|  | 
 | ||
|  | 	/* Insert the string window[strstart .. strstart+2] in the | ||
|  | 	 * dictionary, and set hash_head to the head of the hash chain: | ||
|  | 	 */ | ||
|  | 	zip_INSERT_STRING(); | ||
|  | 
 | ||
|  | 	/* Find the longest match, discarding those <= prev_length. | ||
|  | 	 * At this point we have always match_length < MIN_MATCH | ||
|  | 	 */ | ||
|  | 	if(zip_hash_head != zip_NIL && | ||
|  | 	   zip_strstart - zip_hash_head <= zip_MAX_DIST) { | ||
|  | 	    /* To simplify the code, we prevent matches with the string | ||
|  | 	     * of window index 0 (in particular we have to avoid a match | ||
|  | 	     * of the string with itself at the start of the input file). | ||
|  | 	     */ | ||
|  | 	    zip_match_length = zip_longest_match(zip_hash_head); | ||
|  | 	    /* longest_match() sets match_start */ | ||
|  | 	    if(zip_match_length > zip_lookahead) | ||
|  | 		zip_match_length = zip_lookahead; | ||
|  | 	} | ||
|  | 	if(zip_match_length >= zip_MIN_MATCH) { | ||
|  | //	    check_match(strstart, match_start, match_length);
 | ||
|  | 
 | ||
|  | 	    flush = zip_ct_tally(zip_strstart - zip_match_start, | ||
|  | 				 zip_match_length - zip_MIN_MATCH); | ||
|  | 	    zip_lookahead -= zip_match_length; | ||
|  | 
 | ||
|  | 	    /* Insert new strings in the hash table only if the match length | ||
|  | 	     * is not too large. This saves time but degrades compression. | ||
|  | 	     */ | ||
|  | 	    if(zip_match_length <= zip_max_lazy_match) { | ||
|  | 		zip_match_length--; // string at strstart already in hash table
 | ||
|  | 		do { | ||
|  | 		    zip_strstart++; | ||
|  | 		    zip_INSERT_STRING(); | ||
|  | 		    /* strstart never exceeds WSIZE-MAX_MATCH, so there are | ||
|  | 		     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH | ||
|  | 		     * these bytes are garbage, but it does not matter since | ||
|  | 		     * the next lookahead bytes will be emitted as literals. | ||
|  | 		     */ | ||
|  | 		} while(--zip_match_length != 0); | ||
|  | 		zip_strstart++; | ||
|  | 	    } else { | ||
|  | 		zip_strstart += zip_match_length; | ||
|  | 		zip_match_length = 0; | ||
|  | 		zip_ins_h = zip_window[zip_strstart] & 0xff; | ||
|  | //		UPDATE_HASH(ins_h, window[strstart + 1]);
 | ||
|  | 		zip_ins_h = ((zip_ins_h<<zip_H_SHIFT) ^ (zip_window[zip_strstart + 1] & 0xff)) & zip_HASH_MASK; | ||
|  | 
 | ||
|  | //#if MIN_MATCH != 3
 | ||
|  | //		Call UPDATE_HASH() MIN_MATCH-3 more times
 | ||
|  | //#endif
 | ||
|  | 
 | ||
|  | 	    } | ||
|  | 	} else { | ||
|  | 	    /* No match, output a literal byte */ | ||
|  | 	    flush = zip_ct_tally(0, zip_window[zip_strstart] & 0xff); | ||
|  | 	    zip_lookahead--; | ||
|  | 	    zip_strstart++; | ||
|  | 	} | ||
|  | 	if(flush) { | ||
|  | 	    zip_flush_block(0); | ||
|  | 	    zip_block_start = zip_strstart; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Make sure that we always have enough lookahead, except | ||
|  | 	 * at the end of the input file. We need MAX_MATCH bytes | ||
|  | 	 * for the next match, plus MIN_MATCH bytes to insert the | ||
|  | 	 * string following the next match. | ||
|  | 	 */ | ||
|  | 	while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) | ||
|  | 	    zip_fill_window(); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | var zip_deflate_better = function() { | ||
|  |     /* Process the input block. */ | ||
|  |     while(zip_lookahead != 0 && zip_qhead == null) { | ||
|  | 	/* Insert the string window[strstart .. strstart+2] in the | ||
|  | 	 * dictionary, and set hash_head to the head of the hash chain: | ||
|  | 	 */ | ||
|  | 	zip_INSERT_STRING(); | ||
|  | 
 | ||
|  | 	/* Find the longest match, discarding those <= prev_length. | ||
|  | 	 */ | ||
|  | 	zip_prev_length = zip_match_length; | ||
|  | 	zip_prev_match = zip_match_start; | ||
|  | 	zip_match_length = zip_MIN_MATCH - 1; | ||
|  | 
 | ||
|  | 	if(zip_hash_head != zip_NIL && | ||
|  | 	   zip_prev_length < zip_max_lazy_match && | ||
|  | 	   zip_strstart - zip_hash_head <= zip_MAX_DIST) { | ||
|  | 	    /* To simplify the code, we prevent matches with the string | ||
|  | 	     * of window index 0 (in particular we have to avoid a match | ||
|  | 	     * of the string with itself at the start of the input file). | ||
|  | 	     */ | ||
|  | 	    zip_match_length = zip_longest_match(zip_hash_head); | ||
|  | 	    /* longest_match() sets match_start */ | ||
|  | 	    if(zip_match_length > zip_lookahead) | ||
|  | 		zip_match_length = zip_lookahead; | ||
|  | 
 | ||
|  | 	    /* Ignore a length 3 match if it is too distant: */ | ||
|  | 	    if(zip_match_length == zip_MIN_MATCH && | ||
|  | 	       zip_strstart - zip_match_start > zip_TOO_FAR) { | ||
|  | 		/* If prev_match is also MIN_MATCH, match_start is garbage | ||
|  | 		 * but we will ignore the current match anyway. | ||
|  | 		 */ | ||
|  | 		zip_match_length--; | ||
|  | 	    } | ||
|  | 	} | ||
|  | 	/* If there was a match at the previous step and the current | ||
|  | 	 * match is not better, output the previous match: | ||
|  | 	 */ | ||
|  | 	if(zip_prev_length >= zip_MIN_MATCH && | ||
|  | 	   zip_match_length <= zip_prev_length) { | ||
|  | 	    var flush; // set if current block must be flushed
 | ||
|  | 
 | ||
|  | //	    check_match(strstart - 1, prev_match, prev_length);
 | ||
|  | 	    flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match, | ||
|  | 				 zip_prev_length - zip_MIN_MATCH); | ||
|  | 
 | ||
|  | 	    /* Insert in hash table all strings up to the end of the match. | ||
|  | 	     * strstart-1 and strstart are already inserted. | ||
|  | 	     */ | ||
|  | 	    zip_lookahead -= zip_prev_length - 1; | ||
|  | 	    zip_prev_length -= 2; | ||
|  | 	    do { | ||
|  | 		zip_strstart++; | ||
|  | 		zip_INSERT_STRING(); | ||
|  | 		/* strstart never exceeds WSIZE-MAX_MATCH, so there are | ||
|  | 		 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH | ||
|  | 		 * these bytes are garbage, but it does not matter since the | ||
|  | 		 * next lookahead bytes will always be emitted as literals. | ||
|  | 		 */ | ||
|  | 	    } while(--zip_prev_length != 0); | ||
|  | 	    zip_match_available = 0; | ||
|  | 	    zip_match_length = zip_MIN_MATCH - 1; | ||
|  | 	    zip_strstart++; | ||
|  | 	    if(flush) { | ||
|  | 		zip_flush_block(0); | ||
|  | 		zip_block_start = zip_strstart; | ||
|  | 	    } | ||
|  | 	} else if(zip_match_available != 0) { | ||
|  | 	    /* If there was no match at the previous position, output a | ||
|  | 	     * single literal. If there was a match but the current match | ||
|  | 	     * is longer, truncate the previous match to a single literal. | ||
|  | 	     */ | ||
|  | 	    if(zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) { | ||
|  | 		zip_flush_block(0); | ||
|  | 		zip_block_start = zip_strstart; | ||
|  | 	    } | ||
|  | 	    zip_strstart++; | ||
|  | 	    zip_lookahead--; | ||
|  | 	} else { | ||
|  | 	    /* There is no previous match to compare with, wait for | ||
|  | 	     * the next step to decide. | ||
|  | 	     */ | ||
|  | 	    zip_match_available = 1; | ||
|  | 	    zip_strstart++; | ||
|  | 	    zip_lookahead--; | ||
|  | 	} | ||
|  | 
 | ||
|  | 	/* Make sure that we always have enough lookahead, except | ||
|  | 	 * at the end of the input file. We need MAX_MATCH bytes | ||
|  | 	 * for the next match, plus MIN_MATCH bytes to insert the | ||
|  | 	 * string following the next match. | ||
|  | 	 */ | ||
|  | 	while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) | ||
|  | 	    zip_fill_window(); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | var zip_init_deflate = function() { | ||
|  |     if(zip_eofile) | ||
|  | 	return; | ||
|  |     zip_bi_buf = 0; | ||
|  |     zip_bi_valid = 0; | ||
|  |     zip_ct_init(); | ||
|  |     zip_lm_init(); | ||
|  | 
 | ||
|  |     zip_qhead = null; | ||
|  |     zip_outcnt = 0; | ||
|  |     zip_outoff = 0; | ||
|  | 
 | ||
|  |     if(zip_compr_level <= 3) | ||
|  |     { | ||
|  | 	zip_prev_length = zip_MIN_MATCH - 1; | ||
|  | 	zip_match_length = 0; | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  | 	zip_match_length = zip_MIN_MATCH - 1; | ||
|  | 	zip_match_available = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     zip_complete = false; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Same as above, but achieves better compression. We use a lazy | ||
|  |  * evaluation for matches: a match is finally adopted only if there is | ||
|  |  * no better match at the next window position. | ||
|  |  */ | ||
|  | var zip_deflate_internal = function(buff, off, buff_size) { | ||
|  |     var n; | ||
|  | 
 | ||
|  |     if(!zip_initflag) | ||
|  |     { | ||
|  | 	zip_init_deflate(); | ||
|  | 	zip_initflag = true; | ||
|  | 	if(zip_lookahead == 0) { // empty
 | ||
|  | 	    zip_complete = true; | ||
|  | 	    return 0; | ||
|  | 	} | ||
|  |     } | ||
|  | 
 | ||
|  |     if((n = zip_qcopy(buff, off, buff_size)) == buff_size) | ||
|  | 	return buff_size; | ||
|  | 
 | ||
|  |     if(zip_complete) | ||
|  | 	return n; | ||
|  | 
 | ||
|  |     if(zip_compr_level <= 3) // optimized for speed
 | ||
|  | 	zip_deflate_fast(); | ||
|  |     else | ||
|  | 	zip_deflate_better(); | ||
|  |     if(zip_lookahead == 0) { | ||
|  | 	if(zip_match_available != 0) | ||
|  | 	    zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff); | ||
|  | 	zip_flush_block(1); | ||
|  | 	zip_complete = true; | ||
|  |     } | ||
|  |     return n + zip_qcopy(buff, n + off, buff_size - n); | ||
|  | } | ||
|  | 
 | ||
|  | var zip_qcopy = function(buff, off, buff_size) { | ||
|  |     var n, i, j; | ||
|  | 
 | ||
|  |     n = 0; | ||
|  |     while(zip_qhead != null && n < buff_size) | ||
|  |     { | ||
|  | 	i = buff_size - n; | ||
|  | 	if(i > zip_qhead.len) | ||
|  | 	    i = zip_qhead.len; | ||
|  | //      System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i);
 | ||
|  | 	for(j = 0; j < i; j++) | ||
|  | 	    buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j]; | ||
|  | 	 | ||
|  | 	zip_qhead.off += i; | ||
|  | 	zip_qhead.len -= i; | ||
|  | 	n += i; | ||
|  | 	if(zip_qhead.len == 0) { | ||
|  | 	    var p; | ||
|  | 	    p = zip_qhead; | ||
|  | 	    zip_qhead = zip_qhead.next; | ||
|  | 	    zip_reuse_queue(p); | ||
|  | 	} | ||
|  |     } | ||
|  | 
 | ||
|  |     if(n == buff_size) | ||
|  | 	return n; | ||
|  | 
 | ||
|  |     if(zip_outoff < zip_outcnt) { | ||
|  | 	i = buff_size - n; | ||
|  | 	if(i > zip_outcnt - zip_outoff) | ||
|  | 	    i = zip_outcnt - zip_outoff; | ||
|  | 	// System.arraycopy(outbuf, outoff, buff, off + n, i);
 | ||
|  | 	for(j = 0; j < i; j++) | ||
|  | 	    buff[off + n + j] = zip_outbuf[zip_outoff + j]; | ||
|  | 	zip_outoff += i; | ||
|  | 	n += i; | ||
|  | 	if(zip_outcnt == zip_outoff) | ||
|  | 	    zip_outcnt = zip_outoff = 0; | ||
|  |     } | ||
|  |     return n; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Allocate the match buffer, initialize the various tables and save the | ||
|  |  * location of the internal file attribute (ascii/binary) and method | ||
|  |  * (DEFLATE/STORE). | ||
|  |  */ | ||
|  | var zip_ct_init = function() { | ||
|  |     var n;	// iterates over tree elements
 | ||
|  |     var bits;	// bit counter
 | ||
|  |     var length;	// length value
 | ||
|  |     var code;	// code value
 | ||
|  |     var dist;	// distance index
 | ||
|  | 
 | ||
|  |     if(zip_static_dtree[0].dl != 0) return; // ct_init already called
 | ||
|  | 
 | ||
|  |     zip_l_desc.dyn_tree		= zip_dyn_ltree; | ||
|  |     zip_l_desc.static_tree	= zip_static_ltree; | ||
|  |     zip_l_desc.extra_bits	= zip_extra_lbits; | ||
|  |     zip_l_desc.extra_base	= zip_LITERALS + 1; | ||
|  |     zip_l_desc.elems		= zip_L_CODES; | ||
|  |     zip_l_desc.max_length	= zip_MAX_BITS; | ||
|  |     zip_l_desc.max_code		= 0; | ||
|  | 
 | ||
|  |     zip_d_desc.dyn_tree		= zip_dyn_dtree; | ||
|  |     zip_d_desc.static_tree	= zip_static_dtree; | ||
|  |     zip_d_desc.extra_bits	= zip_extra_dbits; | ||
|  |     zip_d_desc.extra_base	= 0; | ||
|  |     zip_d_desc.elems		= zip_D_CODES; | ||
|  |     zip_d_desc.max_length	= zip_MAX_BITS; | ||
|  |     zip_d_desc.max_code		= 0; | ||
|  | 
 | ||
|  |     zip_bl_desc.dyn_tree	= zip_bl_tree; | ||
|  |     zip_bl_desc.static_tree	= null; | ||
|  |     zip_bl_desc.extra_bits	= zip_extra_blbits; | ||
|  |     zip_bl_desc.extra_base	= 0; | ||
|  |     zip_bl_desc.elems		= zip_BL_CODES; | ||
|  |     zip_bl_desc.max_length	= zip_MAX_BL_BITS; | ||
|  |     zip_bl_desc.max_code	= 0; | ||
|  | 
 | ||
|  |     // Initialize the mapping length (0..255) -> length code (0..28)
 | ||
|  |     length = 0; | ||
|  |     for(code = 0; code < zip_LENGTH_CODES-1; code++) { | ||
|  | 	zip_base_length[code] = length; | ||
|  | 	for(n = 0; n < (1<<zip_extra_lbits[code]); n++) | ||
|  | 	    zip_length_code[length++] = code; | ||
|  |     } | ||
|  |     // Assert (length == 256, "ct_init: length != 256");
 | ||
|  | 
 | ||
|  |     /* Note that the length 255 (match length 258) can be represented | ||
|  |      * in two different ways: code 284 + 5 bits or code 285, so we | ||
|  |      * overwrite length_code[255] to use the best encoding: | ||
|  |      */ | ||
|  |     zip_length_code[length-1] = code; | ||
|  | 
 | ||
|  |     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ | ||
|  |     dist = 0; | ||
|  |     for(code = 0 ; code < 16; code++) { | ||
|  | 	zip_base_dist[code] = dist; | ||
|  | 	for(n = 0; n < (1<<zip_extra_dbits[code]); n++) { | ||
|  | 	    zip_dist_code[dist++] = code; | ||
|  | 	} | ||
|  |     } | ||
|  |     // Assert (dist == 256, "ct_init: dist != 256");
 | ||
|  |     dist >>= 7; // from now on, all distances are divided by 128
 | ||
|  |     for( ; code < zip_D_CODES; code++) { | ||
|  | 	zip_base_dist[code] = dist << 7; | ||
|  | 	for(n = 0; n < (1<<(zip_extra_dbits[code]-7)); n++) | ||
|  | 	    zip_dist_code[256 + dist++] = code; | ||
|  |     } | ||
|  |     // Assert (dist == 256, "ct_init: 256+dist != 512");
 | ||
|  | 
 | ||
|  |     // Construct the codes of the static literal tree
 | ||
|  |     for(bits = 0; bits <= zip_MAX_BITS; bits++) | ||
|  | 	zip_bl_count[bits] = 0; | ||
|  |     n = 0; | ||
|  |     while(n <= 143) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } | ||
|  |     while(n <= 255) { zip_static_ltree[n++].dl = 9; zip_bl_count[9]++; } | ||
|  |     while(n <= 279) { zip_static_ltree[n++].dl = 7; zip_bl_count[7]++; } | ||
|  |     while(n <= 287) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } | ||
|  |     /* Codes 286 and 287 do not exist, but we must include them in the | ||
|  |      * tree construction to get a canonical Huffman tree (longest code | ||
|  |      * all ones) | ||
|  |      */ | ||
|  |     zip_gen_codes(zip_static_ltree, zip_L_CODES + 1); | ||
|  | 
 | ||
|  |     /* The static distance tree is trivial: */ | ||
|  |     for(n = 0; n < zip_D_CODES; n++) { | ||
|  | 	zip_static_dtree[n].dl = 5; | ||
|  | 	zip_static_dtree[n].fc = zip_bi_reverse(n, 5); | ||
|  |     } | ||
|  | 
 | ||
|  |     // Initialize the first block of the first file:
 | ||
|  |     zip_init_block(); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Initialize a new block. | ||
|  |  */ | ||
|  | var zip_init_block = function() { | ||
|  |     var n; // iterates over tree elements
 | ||
|  | 
 | ||
|  |     // Initialize the trees.
 | ||
|  |     for(n = 0; n < zip_L_CODES;  n++) zip_dyn_ltree[n].fc = 0; | ||
|  |     for(n = 0; n < zip_D_CODES;  n++) zip_dyn_dtree[n].fc = 0; | ||
|  |     for(n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0; | ||
|  | 
 | ||
|  |     zip_dyn_ltree[zip_END_BLOCK].fc = 1; | ||
|  |     zip_opt_len = zip_static_len = 0; | ||
|  |     zip_last_lit = zip_last_dist = zip_last_flags = 0; | ||
|  |     zip_flags = 0; | ||
|  |     zip_flag_bit = 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Restore the heap property by moving down the tree starting at node k, | ||
|  |  * exchanging a node with the smallest of its two sons if necessary, stopping | ||
|  |  * when the heap property is re-established (each father smaller than its | ||
|  |  * two sons). | ||
|  |  */ | ||
|  | var zip_pqdownheap = function( | ||
|  |     tree,	// the tree to restore
 | ||
|  |     k) {	// node to move down
 | ||
|  |     var v = zip_heap[k]; | ||
|  |     var j = k << 1;	// left son of k
 | ||
|  | 
 | ||
|  |     while(j <= zip_heap_len) { | ||
|  | 	// Set j to the smallest of the two sons:
 | ||
|  | 	if(j < zip_heap_len && | ||
|  | 	   zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j])) | ||
|  | 	    j++; | ||
|  | 
 | ||
|  | 	// Exit if v is smaller than both sons
 | ||
|  | 	if(zip_SMALLER(tree, v, zip_heap[j])) | ||
|  | 	    break; | ||
|  | 
 | ||
|  | 	// Exchange v with the smallest son
 | ||
|  | 	zip_heap[k] = zip_heap[j]; | ||
|  | 	k = j; | ||
|  | 
 | ||
|  | 	// And continue down the tree, setting j to the left son of k
 | ||
|  | 	j <<= 1; | ||
|  |     } | ||
|  |     zip_heap[k] = v; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Compute the optimal bit lengths for a tree and update the total bit length | ||
|  |  * for the current block. | ||
|  |  * IN assertion: the fields freq and dad are set, heap[heap_max] and | ||
|  |  *    above are the tree nodes sorted by increasing frequency. | ||
|  |  * OUT assertions: the field len is set to the optimal bit length, the | ||
|  |  *     array bl_count contains the frequencies for each bit length. | ||
|  |  *     The length opt_len is updated; static_len is also updated if stree is | ||
|  |  *     not null. | ||
|  |  */ | ||
|  | var zip_gen_bitlen = function(desc) { // the tree descriptor
 | ||
|  |     var tree		= desc.dyn_tree; | ||
|  |     var extra		= desc.extra_bits; | ||
|  |     var base		= desc.extra_base; | ||
|  |     var max_code	= desc.max_code; | ||
|  |     var max_length	= desc.max_length; | ||
|  |     var stree		= desc.static_tree; | ||
|  |     var h;		// heap index
 | ||
|  |     var n, m;		// iterate over the tree elements
 | ||
|  |     var bits;		// bit length
 | ||
|  |     var xbits;		// extra bits
 | ||
|  |     var f;		// frequency
 | ||
|  |     var overflow = 0;	// number of elements with bit length too large
 | ||
|  | 
 | ||
|  |     for(bits = 0; bits <= zip_MAX_BITS; bits++) | ||
|  | 	zip_bl_count[bits] = 0; | ||
|  | 
 | ||
|  |     /* In a first pass, compute the optimal bit lengths (which may | ||
|  |      * overflow in the case of the bit length tree). | ||
|  |      */ | ||
|  |     tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap
 | ||
|  | 
 | ||
|  |     for(h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) { | ||
|  | 	n = zip_heap[h]; | ||
|  | 	bits = tree[tree[n].dl].dl + 1; | ||
|  | 	if(bits > max_length) { | ||
|  | 	    bits = max_length; | ||
|  | 	    overflow++; | ||
|  | 	} | ||
|  | 	tree[n].dl = bits; | ||
|  | 	// We overwrite tree[n].dl which is no longer needed
 | ||
|  | 
 | ||
|  | 	if(n > max_code) | ||
|  | 	    continue; // not a leaf node
 | ||
|  | 
 | ||
|  | 	zip_bl_count[bits]++; | ||
|  | 	xbits = 0; | ||
|  | 	if(n >= base) | ||
|  | 	    xbits = extra[n - base]; | ||
|  | 	f = tree[n].fc; | ||
|  | 	zip_opt_len += f * (bits + xbits); | ||
|  | 	if(stree != null) | ||
|  | 	    zip_static_len += f * (stree[n].dl + xbits); | ||
|  |     } | ||
|  |     if(overflow == 0) | ||
|  | 	return; | ||
|  | 
 | ||
|  |     // This happens for example on obj2 and pic of the Calgary corpus
 | ||
|  | 
 | ||
|  |     // Find the first bit length which could increase:
 | ||
|  |     do { | ||
|  | 	bits = max_length - 1; | ||
|  | 	while(zip_bl_count[bits] == 0) | ||
|  | 	    bits--; | ||
|  | 	zip_bl_count[bits]--;		// move one leaf down the tree
 | ||
|  | 	zip_bl_count[bits + 1] += 2;	// move one overflow item as its brother
 | ||
|  | 	zip_bl_count[max_length]--; | ||
|  | 	/* The brother of the overflow item also moves one step up, | ||
|  | 	 * but this does not affect bl_count[max_length] | ||
|  | 	 */ | ||
|  | 	overflow -= 2; | ||
|  |     } while(overflow > 0); | ||
|  | 
 | ||
|  |     /* Now recompute all bit lengths, scanning in increasing frequency. | ||
|  |      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all | ||
|  |      * lengths instead of fixing only the wrong ones. This idea is taken | ||
|  |      * from 'ar' written by Haruhiko Okumura.) | ||
|  |      */ | ||
|  |     for(bits = max_length; bits != 0; bits--) { | ||
|  | 	n = zip_bl_count[bits]; | ||
|  | 	while(n != 0) { | ||
|  | 	    m = zip_heap[--h]; | ||
|  | 	    if(m > max_code) | ||
|  | 		continue; | ||
|  | 	    if(tree[m].dl != bits) { | ||
|  | 		zip_opt_len += (bits - tree[m].dl) * tree[m].fc; | ||
|  | 		tree[m].fc = bits; | ||
|  | 	    } | ||
|  | 	    n--; | ||
|  | 	} | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  |   /* ========================================================================== | ||
|  |    * Generate the codes for a given tree and bit counts (which need not be | ||
|  |    * optimal). | ||
|  |    * IN assertion: the array bl_count contains the bit length statistics for | ||
|  |    * the given tree and the field len is set for all tree elements. | ||
|  |    * OUT assertion: the field code is set for all tree elements of non | ||
|  |    *     zero code length. | ||
|  |    */ | ||
|  | var zip_gen_codes = function(tree,	// the tree to decorate
 | ||
|  | 		   max_code) {	// largest code with non zero frequency
 | ||
|  |     var next_code = new Array(zip_MAX_BITS+1); // next code value for each bit length
 | ||
|  |     var code = 0;		// running code value
 | ||
|  |     var bits;			// bit index
 | ||
|  |     var n;			// code index
 | ||
|  | 
 | ||
|  |     /* The distribution counts are first used to generate the code values | ||
|  |      * without bit reversal. | ||
|  |      */ | ||
|  |     for(bits = 1; bits <= zip_MAX_BITS; bits++) { | ||
|  | 	code = ((code + zip_bl_count[bits-1]) << 1); | ||
|  | 	next_code[bits] = code; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* Check that the bit counts in bl_count are consistent. The last code | ||
|  |      * must be all ones. | ||
|  |      */ | ||
|  | //    Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | ||
|  | //	    "inconsistent bit counts");
 | ||
|  | //    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | ||
|  | 
 | ||
|  |     for(n = 0; n <= max_code; n++) { | ||
|  | 	var len = tree[n].dl; | ||
|  | 	if(len == 0) | ||
|  | 	    continue; | ||
|  | 	// Now reverse the bits
 | ||
|  | 	tree[n].fc = zip_bi_reverse(next_code[len]++, len); | ||
|  | 
 | ||
|  | //      Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | ||
|  | //	  n, (isgraph(n) ? n : ' '), len, tree[n].fc, next_code[len]-1));
 | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Construct one Huffman tree and assigns the code bit strings and lengths. | ||
|  |  * Update the total bit length for the current block. | ||
|  |  * IN assertion: the field freq is set for all tree elements. | ||
|  |  * OUT assertions: the fields len and code are set to the optimal bit length | ||
|  |  *     and corresponding code. The length opt_len is updated; static_len is | ||
|  |  *     also updated if stree is not null. The field max_code is set. | ||
|  |  */ | ||
|  | var zip_build_tree = function(desc) { // the tree descriptor
 | ||
|  |     var tree	= desc.dyn_tree; | ||
|  |     var stree	= desc.static_tree; | ||
|  |     var elems	= desc.elems; | ||
|  |     var n, m;		// iterate over heap elements
 | ||
|  |     var max_code = -1;	// largest code with non zero frequency
 | ||
|  |     var node = elems;	// next internal node of the tree
 | ||
|  | 
 | ||
|  |     /* Construct the initial heap, with least frequent element in | ||
|  |      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. | ||
|  |      * heap[0] is not used. | ||
|  |      */ | ||
|  |     zip_heap_len = 0; | ||
|  |     zip_heap_max = zip_HEAP_SIZE; | ||
|  | 
 | ||
|  |     for(n = 0; n < elems; n++) { | ||
|  | 	if(tree[n].fc != 0) { | ||
|  | 	    zip_heap[++zip_heap_len] = max_code = n; | ||
|  | 	    zip_depth[n] = 0; | ||
|  | 	} else | ||
|  | 	    tree[n].dl = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* The pkzip format requires that at least one distance code exists, | ||
|  |      * and that at least one bit should be sent even if there is only one | ||
|  |      * possible code. So to avoid special checks later on we force at least | ||
|  |      * two codes of non zero frequency. | ||
|  |      */ | ||
|  |     while(zip_heap_len < 2) { | ||
|  | 	var xnew = zip_heap[++zip_heap_len] = (max_code < 2 ? ++max_code : 0); | ||
|  | 	tree[xnew].fc = 1; | ||
|  | 	zip_depth[xnew] = 0; | ||
|  | 	zip_opt_len--; | ||
|  | 	if(stree != null) | ||
|  | 	    zip_static_len -= stree[xnew].dl; | ||
|  | 	// new is 0 or 1 so it does not have extra bits
 | ||
|  |     } | ||
|  |     desc.max_code = max_code; | ||
|  | 
 | ||
|  |     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, | ||
|  |      * establish sub-heaps of increasing lengths: | ||
|  |      */ | ||
|  |     for(n = zip_heap_len >> 1; n >= 1; n--) | ||
|  | 	zip_pqdownheap(tree, n); | ||
|  | 
 | ||
|  |     /* Construct the Huffman tree by repeatedly combining the least two | ||
|  |      * frequent nodes. | ||
|  |      */ | ||
|  |     do { | ||
|  | 	n = zip_heap[zip_SMALLEST]; | ||
|  | 	zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--]; | ||
|  | 	zip_pqdownheap(tree, zip_SMALLEST); | ||
|  | 
 | ||
|  | 	m = zip_heap[zip_SMALLEST];  // m = node of next least frequency
 | ||
|  | 
 | ||
|  | 	// keep the nodes sorted by frequency
 | ||
|  | 	zip_heap[--zip_heap_max] = n; | ||
|  | 	zip_heap[--zip_heap_max] = m; | ||
|  | 
 | ||
|  | 	// Create a new node father of n and m
 | ||
|  | 	tree[node].fc = tree[n].fc + tree[m].fc; | ||
|  | //	depth[node] = (char)(MAX(depth[n], depth[m]) + 1);
 | ||
|  | 	if(zip_depth[n] > zip_depth[m] + 1) | ||
|  | 	    zip_depth[node] = zip_depth[n]; | ||
|  | 	else | ||
|  | 	    zip_depth[node] = zip_depth[m] + 1; | ||
|  | 	tree[n].dl = tree[m].dl = node; | ||
|  | 
 | ||
|  | 	// and insert the new node in the heap
 | ||
|  | 	zip_heap[zip_SMALLEST] = node++; | ||
|  | 	zip_pqdownheap(tree, zip_SMALLEST); | ||
|  | 
 | ||
|  |     } while(zip_heap_len >= 2); | ||
|  | 
 | ||
|  |     zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST]; | ||
|  | 
 | ||
|  |     /* At this point, the fields freq and dad are set. We can now | ||
|  |      * generate the bit lengths. | ||
|  |      */ | ||
|  |     zip_gen_bitlen(desc); | ||
|  | 
 | ||
|  |     // The field len is now set, we can generate the bit codes
 | ||
|  |     zip_gen_codes(tree, max_code); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Scan a literal or distance tree to determine the frequencies of the codes | ||
|  |  * in the bit length tree. Updates opt_len to take into account the repeat | ||
|  |  * counts. (The contribution of the bit length codes will be added later | ||
|  |  * during the construction of bl_tree.) | ||
|  |  */ | ||
|  | var zip_scan_tree = function(tree,// the tree to be scanned
 | ||
|  | 		       max_code) {  // and its largest code of non zero frequency
 | ||
|  |     var n;			// iterates over all tree elements
 | ||
|  |     var prevlen = -1;		// last emitted length
 | ||
|  |     var curlen;			// length of current code
 | ||
|  |     var nextlen = tree[0].dl;	// length of next code
 | ||
|  |     var count = 0;		// repeat count of the current code
 | ||
|  |     var max_count = 7;		// max repeat count
 | ||
|  |     var min_count = 4;		// min repeat count
 | ||
|  | 
 | ||
|  |     if(nextlen == 0) { | ||
|  | 	max_count = 138; | ||
|  | 	min_count = 3; | ||
|  |     } | ||
|  |     tree[max_code + 1].dl = 0xffff; // guard
 | ||
|  | 
 | ||
|  |     for(n = 0; n <= max_code; n++) { | ||
|  | 	curlen = nextlen; | ||
|  | 	nextlen = tree[n + 1].dl; | ||
|  | 	if(++count < max_count && curlen == nextlen) | ||
|  | 	    continue; | ||
|  | 	else if(count < min_count) | ||
|  | 	    zip_bl_tree[curlen].fc += count; | ||
|  | 	else if(curlen != 0) { | ||
|  | 	    if(curlen != prevlen) | ||
|  | 		zip_bl_tree[curlen].fc++; | ||
|  | 	    zip_bl_tree[zip_REP_3_6].fc++; | ||
|  | 	} else if(count <= 10) | ||
|  | 	    zip_bl_tree[zip_REPZ_3_10].fc++; | ||
|  | 	else | ||
|  | 	    zip_bl_tree[zip_REPZ_11_138].fc++; | ||
|  | 	count = 0; prevlen = curlen; | ||
|  | 	if(nextlen == 0) { | ||
|  | 	    max_count = 138; | ||
|  | 	    min_count = 3; | ||
|  | 	} else if(curlen == nextlen) { | ||
|  | 	    max_count = 6; | ||
|  | 	    min_count = 3; | ||
|  | 	} else { | ||
|  | 	    max_count = 7; | ||
|  | 	    min_count = 4; | ||
|  | 	} | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  |   /* ========================================================================== | ||
|  |    * Send a literal or distance tree in compressed form, using the codes in | ||
|  |    * bl_tree. | ||
|  |    */ | ||
|  | var zip_send_tree = function(tree, // the tree to be scanned
 | ||
|  | 		   max_code) { // and its largest code of non zero frequency
 | ||
|  |     var n;			// iterates over all tree elements
 | ||
|  |     var prevlen = -1;		// last emitted length
 | ||
|  |     var curlen;			// length of current code
 | ||
|  |     var nextlen = tree[0].dl;	// length of next code
 | ||
|  |     var count = 0;		// repeat count of the current code
 | ||
|  |     var max_count = 7;		// max repeat count
 | ||
|  |     var min_count = 4;		// min repeat count
 | ||
|  | 
 | ||
|  |     /* tree[max_code+1].dl = -1; */  /* guard already set */ | ||
|  |     if(nextlen == 0) { | ||
|  |       max_count = 138; | ||
|  |       min_count = 3; | ||
|  |     } | ||
|  | 
 | ||
|  |     for(n = 0; n <= max_code; n++) { | ||
|  | 	curlen = nextlen; | ||
|  | 	nextlen = tree[n+1].dl; | ||
|  | 	if(++count < max_count && curlen == nextlen) { | ||
|  | 	    continue; | ||
|  | 	} else if(count < min_count) { | ||
|  | 	    do { zip_SEND_CODE(curlen, zip_bl_tree); } while(--count != 0); | ||
|  | 	} else if(curlen != 0) { | ||
|  | 	    if(curlen != prevlen) { | ||
|  | 		zip_SEND_CODE(curlen, zip_bl_tree); | ||
|  | 		count--; | ||
|  | 	    } | ||
|  | 	    // Assert(count >= 3 && count <= 6, " 3_6?");
 | ||
|  | 	    zip_SEND_CODE(zip_REP_3_6, zip_bl_tree); | ||
|  | 	    zip_send_bits(count - 3, 2); | ||
|  | 	} else if(count <= 10) { | ||
|  | 	    zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree); | ||
|  | 	    zip_send_bits(count-3, 3); | ||
|  | 	} else { | ||
|  | 	    zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree); | ||
|  | 	    zip_send_bits(count-11, 7); | ||
|  | 	} | ||
|  | 	count = 0; | ||
|  | 	prevlen = curlen; | ||
|  | 	if(nextlen == 0) { | ||
|  | 	    max_count = 138; | ||
|  | 	    min_count = 3; | ||
|  | 	} else if(curlen == nextlen) { | ||
|  | 	    max_count = 6; | ||
|  | 	    min_count = 3; | ||
|  | 	} else { | ||
|  | 	    max_count = 7; | ||
|  | 	    min_count = 4; | ||
|  | 	} | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Construct the Huffman tree for the bit lengths and return the index in | ||
|  |  * bl_order of the last bit length code to send. | ||
|  |  */ | ||
|  | var zip_build_bl_tree = function() { | ||
|  |     var max_blindex;  // index of last bit length code of non zero freq
 | ||
|  | 
 | ||
|  |     // Determine the bit length frequencies for literal and distance trees
 | ||
|  |     zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code); | ||
|  |     zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code); | ||
|  | 
 | ||
|  |     // Build the bit length tree:
 | ||
|  |     zip_build_tree(zip_bl_desc); | ||
|  |     /* opt_len now includes the length of the tree representations, except | ||
|  |      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* Determine the number of bit length codes to send. The pkzip format | ||
|  |      * requires that at least 4 bit length codes be sent. (appnote.txt says | ||
|  |      * 3 but the actual value used is 4.) | ||
|  |      */ | ||
|  |     for(max_blindex = zip_BL_CODES-1; max_blindex >= 3; max_blindex--) { | ||
|  | 	if(zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break; | ||
|  |     } | ||
|  |     /* Update opt_len to include the bit length tree and counts */ | ||
|  |     zip_opt_len += 3*(max_blindex+1) + 5+5+4; | ||
|  | //    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | ||
|  | //	    encoder->opt_len, encoder->static_len));
 | ||
|  | 
 | ||
|  |     return max_blindex; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Send the header for a block using dynamic Huffman trees: the counts, the | ||
|  |  * lengths of the bit length codes, the literal tree and the distance tree. | ||
|  |  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. | ||
|  |  */ | ||
|  | var zip_send_all_trees = function(lcodes, dcodes, blcodes) { // number of codes for each tree
 | ||
|  |     var rank; // index in bl_order
 | ||
|  | 
 | ||
|  | //    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | ||
|  | //    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | ||
|  | //	    "too many codes");
 | ||
|  | //    Tracev((stderr, "\nbl counts: "));
 | ||
|  |     zip_send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
 | ||
|  |     zip_send_bits(dcodes-1,   5); | ||
|  |     zip_send_bits(blcodes-4,  4); // not -3 as stated in appnote.txt
 | ||
|  |     for(rank = 0; rank < blcodes; rank++) { | ||
|  | //      Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | ||
|  | 	zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3); | ||
|  |     } | ||
|  | 
 | ||
|  |     // send the literal tree
 | ||
|  |     zip_send_tree(zip_dyn_ltree,lcodes-1); | ||
|  | 
 | ||
|  |     // send the distance tree
 | ||
|  |     zip_send_tree(zip_dyn_dtree,dcodes-1); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Determine the best encoding for the current block: dynamic trees, static | ||
|  |  * trees or store, and output the encoded block to the zip file. | ||
|  |  */ | ||
|  | var zip_flush_block = function(eof) { // true if this is the last block for a file
 | ||
|  |     var opt_lenb, static_lenb; // opt_len and static_len in bytes
 | ||
|  |     var max_blindex;	// index of last bit length code of non zero freq
 | ||
|  |     var stored_len;	// length of input block
 | ||
|  | 
 | ||
|  |     stored_len = zip_strstart - zip_block_start; | ||
|  |     zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items
 | ||
|  | 
 | ||
|  |     // Construct the literal and distance trees
 | ||
|  |     zip_build_tree(zip_l_desc); | ||
|  | //    Tracev((stderr, "\nlit data: dyn %ld, stat %ld",
 | ||
|  | //	    encoder->opt_len, encoder->static_len));
 | ||
|  | 
 | ||
|  |     zip_build_tree(zip_d_desc); | ||
|  | //    Tracev((stderr, "\ndist data: dyn %ld, stat %ld",
 | ||
|  | //	    encoder->opt_len, encoder->static_len));
 | ||
|  |     /* At this point, opt_len and static_len are the total bit lengths of | ||
|  |      * the compressed block data, excluding the tree representations. | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* Build the bit length tree for the above two trees, and get the index | ||
|  |      * in bl_order of the last bit length code to send. | ||
|  |      */ | ||
|  |     max_blindex = zip_build_bl_tree(); | ||
|  | 
 | ||
|  |     // Determine the best encoding. Compute first the block length in bytes
 | ||
|  |     opt_lenb	= (zip_opt_len   +3+7)>>3; | ||
|  |     static_lenb = (zip_static_len+3+7)>>3; | ||
|  | 
 | ||
|  | //    Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
 | ||
|  | //	   opt_lenb, encoder->opt_len,
 | ||
|  | //	   static_lenb, encoder->static_len, stored_len,
 | ||
|  | //	   encoder->last_lit, encoder->last_dist));
 | ||
|  | 
 | ||
|  |     if(static_lenb <= opt_lenb) | ||
|  | 	opt_lenb = static_lenb; | ||
|  |     if(stored_len + 4 <= opt_lenb // 4: two words for the lengths
 | ||
|  |        && zip_block_start >= 0) { | ||
|  | 	var i; | ||
|  | 
 | ||
|  | 	/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. | ||
|  | 	 * Otherwise we can't have processed more than WSIZE input bytes since | ||
|  | 	 * the last block flush, because compression would have been | ||
|  | 	 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to | ||
|  | 	 * transform a block into a stored block. | ||
|  | 	 */ | ||
|  | 	zip_send_bits((zip_STORED_BLOCK<<1)+eof, 3);  /* send block type */ | ||
|  | 	zip_bi_windup();		 /* align on byte boundary */ | ||
|  | 	zip_put_short(stored_len); | ||
|  | 	zip_put_short(~stored_len); | ||
|  | 
 | ||
|  |       // copy block
 | ||
|  | /* | ||
|  |       p = &window[block_start]; | ||
|  |       for(i = 0; i < stored_len; i++) | ||
|  | 	put_byte(p[i]); | ||
|  | */ | ||
|  | 	for(i = 0; i < stored_len; i++) | ||
|  | 	    zip_put_byte(zip_window[zip_block_start + i]); | ||
|  | 
 | ||
|  |     } else if(static_lenb == opt_lenb) { | ||
|  | 	zip_send_bits((zip_STATIC_TREES<<1)+eof, 3); | ||
|  | 	zip_compress_block(zip_static_ltree, zip_static_dtree); | ||
|  |     } else { | ||
|  | 	zip_send_bits((zip_DYN_TREES<<1)+eof, 3); | ||
|  | 	zip_send_all_trees(zip_l_desc.max_code+1, | ||
|  | 			   zip_d_desc.max_code+1, | ||
|  | 			   max_blindex+1); | ||
|  | 	zip_compress_block(zip_dyn_ltree, zip_dyn_dtree); | ||
|  |     } | ||
|  | 
 | ||
|  |     zip_init_block(); | ||
|  | 
 | ||
|  |     if(eof != 0) | ||
|  | 	zip_bi_windup(); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Save the match info and tally the frequency counts. Return true if | ||
|  |  * the current block must be flushed. | ||
|  |  */ | ||
|  | var zip_ct_tally = function( | ||
|  | 	dist, // distance of matched string
 | ||
|  | 	lc) { // match length-MIN_MATCH or unmatched char (if dist==0)
 | ||
|  |     zip_l_buf[zip_last_lit++] = lc; | ||
|  |     if(dist == 0) { | ||
|  | 	// lc is the unmatched char
 | ||
|  | 	zip_dyn_ltree[lc].fc++; | ||
|  |     } else { | ||
|  | 	// Here, lc is the match length - MIN_MATCH
 | ||
|  | 	dist--;		    // dist = match distance - 1
 | ||
|  | //      Assert((ush)dist < (ush)MAX_DIST &&
 | ||
|  | //	     (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | ||
|  | //	     (ush)D_CODE(dist) < (ush)D_CODES,  "ct_tally: bad match");
 | ||
|  | 
 | ||
|  | 	zip_dyn_ltree[zip_length_code[lc]+zip_LITERALS+1].fc++; | ||
|  | 	zip_dyn_dtree[zip_D_CODE(dist)].fc++; | ||
|  | 
 | ||
|  | 	zip_d_buf[zip_last_dist++] = dist; | ||
|  | 	zip_flags |= zip_flag_bit; | ||
|  |     } | ||
|  |     zip_flag_bit <<= 1; | ||
|  | 
 | ||
|  |     // Output the flags if they fill a byte
 | ||
|  |     if((zip_last_lit & 7) == 0) { | ||
|  | 	zip_flag_buf[zip_last_flags++] = zip_flags; | ||
|  | 	zip_flags = 0; | ||
|  | 	zip_flag_bit = 1; | ||
|  |     } | ||
|  |     // Try to guess if it is profitable to stop the current block here
 | ||
|  |     if(zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) { | ||
|  | 	// Compute an upper bound for the compressed length
 | ||
|  | 	var out_length = zip_last_lit * 8; | ||
|  | 	var in_length = zip_strstart - zip_block_start; | ||
|  | 	var dcode; | ||
|  | 
 | ||
|  | 	for(dcode = 0; dcode < zip_D_CODES; dcode++) { | ||
|  | 	    out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]); | ||
|  | 	} | ||
|  | 	out_length >>= 3; | ||
|  | //      Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
 | ||
|  | //	     encoder->last_lit, encoder->last_dist, in_length, out_length,
 | ||
|  | //	     100L - out_length*100L/in_length));
 | ||
|  | 	if(zip_last_dist < parseInt(zip_last_lit/2) && | ||
|  | 	   out_length < parseInt(in_length/2)) | ||
|  | 	    return true; | ||
|  |     } | ||
|  |     return (zip_last_lit == zip_LIT_BUFSIZE-1 || | ||
|  | 	    zip_last_dist == zip_DIST_BUFSIZE); | ||
|  |     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K | ||
|  |      * on 16 bit machines and because stored blocks are restricted to | ||
|  |      * 64K-1 bytes. | ||
|  |      */ | ||
|  | } | ||
|  | 
 | ||
|  |   /* ========================================================================== | ||
|  |    * Send the block data compressed using the given Huffman trees | ||
|  |    */ | ||
|  | var zip_compress_block = function( | ||
|  | 	ltree,	// literal tree
 | ||
|  | 	dtree) {	// distance tree
 | ||
|  |     var dist;		// distance of matched string
 | ||
|  |     var lc;		// match length or unmatched char (if dist == 0)
 | ||
|  |     var lx = 0;		// running index in l_buf
 | ||
|  |     var dx = 0;		// running index in d_buf
 | ||
|  |     var fx = 0;		// running index in flag_buf
 | ||
|  |     var flag = 0;	// current flags
 | ||
|  |     var code;		// the code to send
 | ||
|  |     var extra;		// number of extra bits to send
 | ||
|  | 
 | ||
|  |     if(zip_last_lit != 0) do { | ||
|  | 	if((lx & 7) == 0) | ||
|  | 	    flag = zip_flag_buf[fx++]; | ||
|  | 	lc = zip_l_buf[lx++] & 0xff; | ||
|  | 	if((flag & 1) == 0) { | ||
|  | 	    zip_SEND_CODE(lc, ltree); /* send a literal byte */ | ||
|  | //	Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | ||
|  | 	} else { | ||
|  | 	    // Here, lc is the match length - MIN_MATCH
 | ||
|  | 	    code = zip_length_code[lc]; | ||
|  | 	    zip_SEND_CODE(code+zip_LITERALS+1, ltree); // send the length code
 | ||
|  | 	    extra = zip_extra_lbits[code]; | ||
|  | 	    if(extra != 0) { | ||
|  | 		lc -= zip_base_length[code]; | ||
|  | 		zip_send_bits(lc, extra); // send the extra length bits
 | ||
|  | 	    } | ||
|  | 	    dist = zip_d_buf[dx++]; | ||
|  | 	    // Here, dist is the match distance - 1
 | ||
|  | 	    code = zip_D_CODE(dist); | ||
|  | //	Assert (code < D_CODES, "bad d_code");
 | ||
|  | 
 | ||
|  | 	    zip_SEND_CODE(code, dtree);	  // send the distance code
 | ||
|  | 	    extra = zip_extra_dbits[code]; | ||
|  | 	    if(extra != 0) { | ||
|  | 		dist -= zip_base_dist[code]; | ||
|  | 		zip_send_bits(dist, extra);   // send the extra distance bits
 | ||
|  | 	    } | ||
|  | 	} // literal or match pair ?
 | ||
|  | 	flag >>= 1; | ||
|  |     } while(lx < zip_last_lit); | ||
|  | 
 | ||
|  |     zip_SEND_CODE(zip_END_BLOCK, ltree); | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Send a value on a given number of bits. | ||
|  |  * IN assertion: length <= 16 and value fits in length bits. | ||
|  |  */ | ||
|  | var zip_Buf_size = 16; // bit size of bi_buf
 | ||
|  | var zip_send_bits = function( | ||
|  | 	value,	// value to send
 | ||
|  | 	length) {	// number of bits
 | ||
|  |     /* If not enough room in bi_buf, use (valid) bits from bi_buf and | ||
|  |      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) | ||
|  |      * unused bits in value. | ||
|  |      */ | ||
|  |     if(zip_bi_valid > zip_Buf_size - length) { | ||
|  | 	zip_bi_buf |= (value << zip_bi_valid); | ||
|  | 	zip_put_short(zip_bi_buf); | ||
|  | 	zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid)); | ||
|  | 	zip_bi_valid += length - zip_Buf_size; | ||
|  |     } else { | ||
|  | 	zip_bi_buf |= value << zip_bi_valid; | ||
|  | 	zip_bi_valid += length; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Reverse the first len bits of a code, using straightforward code (a faster | ||
|  |  * method would use a table) | ||
|  |  * IN assertion: 1 <= len <= 15 | ||
|  |  */ | ||
|  | var zip_bi_reverse = function( | ||
|  | 	code,	// the value to invert
 | ||
|  | 	len) {	// its bit length
 | ||
|  |     var res = 0; | ||
|  |     do { | ||
|  | 	res |= code & 1; | ||
|  | 	code >>= 1; | ||
|  | 	res <<= 1; | ||
|  |     } while(--len > 0); | ||
|  |     return res >> 1; | ||
|  | } | ||
|  | 
 | ||
|  | /* ========================================================================== | ||
|  |  * Write out any remaining bits in an incomplete byte. | ||
|  |  */ | ||
|  | var zip_bi_windup = function() { | ||
|  |     if(zip_bi_valid > 8) { | ||
|  | 	zip_put_short(zip_bi_buf); | ||
|  |     } else if(zip_bi_valid > 0) { | ||
|  | 	zip_put_byte(zip_bi_buf); | ||
|  |     } | ||
|  |     zip_bi_buf = 0; | ||
|  |     zip_bi_valid = 0; | ||
|  | } | ||
|  | 
 | ||
|  | var zip_qoutbuf = function() { | ||
|  |     if(zip_outcnt != 0) { | ||
|  | 	var q, i; | ||
|  | 	q = zip_new_queue(); | ||
|  | 	if(zip_qhead == null) | ||
|  | 	    zip_qhead = zip_qtail = q; | ||
|  | 	else | ||
|  | 	    zip_qtail = zip_qtail.next = q; | ||
|  | 	q.len = zip_outcnt - zip_outoff; | ||
|  | //      System.arraycopy(zip_outbuf, zip_outoff, q.ptr, 0, q.len);
 | ||
|  | 	for(i = 0; i < q.len; i++) | ||
|  | 	    q.ptr[i] = zip_outbuf[zip_outoff + i]; | ||
|  | 	zip_outcnt = zip_outoff = 0; | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | var zip_deflate = function(str, level) { | ||
|  |     var i, j; | ||
|  | 
 | ||
|  |     zip_deflate_data = str; | ||
|  |     zip_deflate_pos = 0; | ||
|  |     if(typeof level == "undefined") | ||
|  | 	level = zip_DEFAULT_LEVEL; | ||
|  |     zip_deflate_start(level); | ||
|  | 
 | ||
|  |     var buff = new Array(1024); | ||
|  |     var aout = []; | ||
|  |     while((i = zip_deflate_internal(buff, 0, buff.length)) > 0) { | ||
|  | 	var cbuf = new Array(i); | ||
|  | 	for(j = 0; j < i; j++){ | ||
|  | 	    cbuf[j] = String.fromCharCode(buff[j]); | ||
|  | 	} | ||
|  | 	aout[aout.length] = cbuf.join(""); | ||
|  |     } | ||
|  |     zip_deflate_data = null; // G.C.
 | ||
|  |     return aout.join(""); | ||
|  | } | ||
|  | 
 | ||
|  | //
 | ||
|  | // end of the script of Masanao Izumo.
 | ||
|  | //
 | ||
|  | 
 | ||
|  | // we add the compression method for JSZip
 | ||
|  | if(!JSZip.compressions["DEFLATE"]) { | ||
|  |   JSZip.compressions["DEFLATE"] = { | ||
|  |     magic : "\x08\x00", | ||
|  |     compress : zip_deflate | ||
|  |   } | ||
|  | } else { | ||
|  |   JSZip.compressions["DEFLATE"].compress = zip_deflate; | ||
|  | } | ||
|  | 
 | ||
|  | })(); | ||
|  | 
 | ||
|  | // enforcing Stuk's coding style
 | ||
|  | // vim: set shiftwidth=3 softtabstop=3:
 |