mirror of
				https://github.com/flynx/PortableMag.git
				synced 2025-10-31 20:10:13 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			1698 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			JavaScript
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			1698 lines
		
	
	
		
			53 KiB
		
	
	
	
		
			JavaScript
		
	
	
		
			Executable File
		
	
	
	
	
| /*
 | |
|  * Port of a script by Masanao Izumo.
 | |
|  *
 | |
|  * Only changes : wrap all the variables in a function and add the 
 | |
|  * main function to JSZip (DEFLATE compression method).
 | |
|  * Everything else was written by M. Izumo.
 | |
|  *
 | |
|  * Original code can be found here: http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
 | |
|  */
 | |
| 
 | |
| if(!JSZip) {
 | |
|    throw "JSZip not defined";
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Original:
 | |
|  *   http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
 | |
|  */
 | |
| 
 | |
| (function(){
 | |
| 
 | |
| /* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
 | |
|  * Version: 1.0.1
 | |
|  * LastModified: Dec 25 1999
 | |
|  */
 | |
| 
 | |
| /* Interface:
 | |
|  * data = zip_deflate(src);
 | |
|  */
 | |
| 
 | |
| /* constant parameters */
 | |
| var zip_WSIZE = 32768;		// Sliding Window size
 | |
| var zip_STORED_BLOCK = 0;
 | |
| var zip_STATIC_TREES = 1;
 | |
| var zip_DYN_TREES    = 2;
 | |
| 
 | |
| /* for deflate */
 | |
| var zip_DEFAULT_LEVEL = 6;
 | |
| var zip_FULL_SEARCH = true;
 | |
| var zip_INBUFSIZ = 32768;	// Input buffer size
 | |
| var zip_INBUF_EXTRA = 64;	// Extra buffer
 | |
| var zip_OUTBUFSIZ = 1024 * 8;
 | |
| var zip_window_size = 2 * zip_WSIZE;
 | |
| var zip_MIN_MATCH = 3;
 | |
| var zip_MAX_MATCH = 258;
 | |
| var zip_BITS = 16;
 | |
| // for SMALL_MEM
 | |
| var zip_LIT_BUFSIZE = 0x2000;
 | |
| var zip_HASH_BITS = 13;
 | |
| // for MEDIUM_MEM
 | |
| // var zip_LIT_BUFSIZE = 0x4000;
 | |
| // var zip_HASH_BITS = 14;
 | |
| // for BIG_MEM
 | |
| // var zip_LIT_BUFSIZE = 0x8000;
 | |
| // var zip_HASH_BITS = 15;
 | |
| if(zip_LIT_BUFSIZE > zip_INBUFSIZ)
 | |
|     alert("error: zip_INBUFSIZ is too small");
 | |
| if((zip_WSIZE<<1) > (1<<zip_BITS))
 | |
|     alert("error: zip_WSIZE is too large");
 | |
| if(zip_HASH_BITS > zip_BITS-1)
 | |
|     alert("error: zip_HASH_BITS is too large");
 | |
| if(zip_HASH_BITS < 8 || zip_MAX_MATCH != 258)
 | |
|     alert("error: Code too clever");
 | |
| var zip_DIST_BUFSIZE = zip_LIT_BUFSIZE;
 | |
| var zip_HASH_SIZE = 1 << zip_HASH_BITS;
 | |
| var zip_HASH_MASK = zip_HASH_SIZE - 1;
 | |
| var zip_WMASK = zip_WSIZE - 1;
 | |
| var zip_NIL = 0; // Tail of hash chains
 | |
| var zip_TOO_FAR = 4096;
 | |
| var zip_MIN_LOOKAHEAD = zip_MAX_MATCH + zip_MIN_MATCH + 1;
 | |
| var zip_MAX_DIST = zip_WSIZE - zip_MIN_LOOKAHEAD;
 | |
| var zip_SMALLEST = 1;
 | |
| var zip_MAX_BITS = 15;
 | |
| var zip_MAX_BL_BITS = 7;
 | |
| var zip_LENGTH_CODES = 29;
 | |
| var zip_LITERALS =256;
 | |
| var zip_END_BLOCK = 256;
 | |
| var zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES;
 | |
| var zip_D_CODES = 30;
 | |
| var zip_BL_CODES = 19;
 | |
| var zip_REP_3_6 = 16;
 | |
| var zip_REPZ_3_10 = 17;
 | |
| var zip_REPZ_11_138 = 18;
 | |
| var zip_HEAP_SIZE = 2 * zip_L_CODES + 1;
 | |
| var zip_H_SHIFT = parseInt((zip_HASH_BITS + zip_MIN_MATCH - 1) /
 | |
| 			   zip_MIN_MATCH);
 | |
| 
 | |
| /* variables */
 | |
| var zip_free_queue;
 | |
| var zip_qhead, zip_qtail;
 | |
| var zip_initflag;
 | |
| var zip_outbuf = null;
 | |
| var zip_outcnt, zip_outoff;
 | |
| var zip_complete;
 | |
| var zip_window;
 | |
| var zip_d_buf;
 | |
| var zip_l_buf;
 | |
| var zip_prev;
 | |
| var zip_bi_buf;
 | |
| var zip_bi_valid;
 | |
| var zip_block_start;
 | |
| var zip_ins_h;
 | |
| var zip_hash_head;
 | |
| var zip_prev_match;
 | |
| var zip_match_available;
 | |
| var zip_match_length;
 | |
| var zip_prev_length;
 | |
| var zip_strstart;
 | |
| var zip_match_start;
 | |
| var zip_eofile;
 | |
| var zip_lookahead;
 | |
| var zip_max_chain_length;
 | |
| var zip_max_lazy_match;
 | |
| var zip_compr_level;
 | |
| var zip_good_match;
 | |
| var zip_nice_match;
 | |
| var zip_dyn_ltree;
 | |
| var zip_dyn_dtree;
 | |
| var zip_static_ltree;
 | |
| var zip_static_dtree;
 | |
| var zip_bl_tree;
 | |
| var zip_l_desc;
 | |
| var zip_d_desc;
 | |
| var zip_bl_desc;
 | |
| var zip_bl_count;
 | |
| var zip_heap;
 | |
| var zip_heap_len;
 | |
| var zip_heap_max;
 | |
| var zip_depth;
 | |
| var zip_length_code;
 | |
| var zip_dist_code;
 | |
| var zip_base_length;
 | |
| var zip_base_dist;
 | |
| var zip_flag_buf;
 | |
| var zip_last_lit;
 | |
| var zip_last_dist;
 | |
| var zip_last_flags;
 | |
| var zip_flags;
 | |
| var zip_flag_bit;
 | |
| var zip_opt_len;
 | |
| var zip_static_len;
 | |
| var zip_deflate_data;
 | |
| var zip_deflate_pos;
 | |
| 
 | |
| /* objects (deflate) */
 | |
| 
 | |
| var zip_DeflateCT = function() {
 | |
|     this.fc = 0; // frequency count or bit string
 | |
|     this.dl = 0; // father node in Huffman tree or length of bit string
 | |
| }
 | |
| 
 | |
| var zip_DeflateTreeDesc = function() {
 | |
|     this.dyn_tree = null;	// the dynamic tree
 | |
|     this.static_tree = null;	// corresponding static tree or NULL
 | |
|     this.extra_bits = null;	// extra bits for each code or NULL
 | |
|     this.extra_base = 0;	// base index for extra_bits
 | |
|     this.elems = 0;		// max number of elements in the tree
 | |
|     this.max_length = 0;	// max bit length for the codes
 | |
|     this.max_code = 0;		// largest code with non zero frequency
 | |
| }
 | |
| 
 | |
| /* Values for max_lazy_match, good_match and max_chain_length, depending on
 | |
|  * the desired pack level (0..9). The values given below have been tuned to
 | |
|  * exclude worst case performance for pathological files. Better values may be
 | |
|  * found for specific files.
 | |
|  */
 | |
| var zip_DeflateConfiguration = function(a, b, c, d) {
 | |
|     this.good_length = a; // reduce lazy search above this match length
 | |
|     this.max_lazy = b;    // do not perform lazy search above this match length
 | |
|     this.nice_length = c; // quit search above this match length
 | |
|     this.max_chain = d;
 | |
| }
 | |
| 
 | |
| var zip_DeflateBuffer = function() {
 | |
|     this.next = null;
 | |
|     this.len = 0;
 | |
|     this.ptr = new Array(zip_OUTBUFSIZ);
 | |
|     this.off = 0;
 | |
| }
 | |
| 
 | |
| /* constant tables */
 | |
| var zip_extra_lbits = new Array(
 | |
|     0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0);
 | |
| var zip_extra_dbits = new Array(
 | |
|     0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13);
 | |
| var zip_extra_blbits = new Array(
 | |
|     0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7);
 | |
| var zip_bl_order = new Array(
 | |
|     16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15);
 | |
| var zip_configuration_table = new Array(
 | |
| 	new zip_DeflateConfiguration(0,    0,   0,    0),
 | |
| 	new zip_DeflateConfiguration(4,    4,   8,    4),
 | |
| 	new zip_DeflateConfiguration(4,    5,  16,    8),
 | |
| 	new zip_DeflateConfiguration(4,    6,  32,   32),
 | |
| 	new zip_DeflateConfiguration(4,    4,  16,   16),
 | |
| 	new zip_DeflateConfiguration(8,   16,  32,   32),
 | |
| 	new zip_DeflateConfiguration(8,   16, 128,  128),
 | |
| 	new zip_DeflateConfiguration(8,   32, 128,  256),
 | |
| 	new zip_DeflateConfiguration(32, 128, 258, 1024),
 | |
| 	new zip_DeflateConfiguration(32, 258, 258, 4096));
 | |
| 
 | |
| 
 | |
| /* routines (deflate) */
 | |
| 
 | |
| var zip_deflate_start = function(level) {
 | |
|     var i;
 | |
| 
 | |
|     if(!level)
 | |
| 	level = zip_DEFAULT_LEVEL;
 | |
|     else if(level < 1)
 | |
| 	level = 1;
 | |
|     else if(level > 9)
 | |
| 	level = 9;
 | |
| 
 | |
|     zip_compr_level = level;
 | |
|     zip_initflag = false;
 | |
|     zip_eofile = false;
 | |
|     if(zip_outbuf != null)
 | |
| 	return;
 | |
| 
 | |
|     zip_free_queue = zip_qhead = zip_qtail = null;
 | |
|     zip_outbuf = new Array(zip_OUTBUFSIZ);
 | |
|     zip_window = new Array(zip_window_size);
 | |
|     zip_d_buf = new Array(zip_DIST_BUFSIZE);
 | |
|     zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA);
 | |
|     zip_prev = new Array(1 << zip_BITS);
 | |
|     zip_dyn_ltree = new Array(zip_HEAP_SIZE);
 | |
|     for(i = 0; i < zip_HEAP_SIZE; i++)
 | |
| 	zip_dyn_ltree[i] = new zip_DeflateCT();
 | |
|     zip_dyn_dtree = new Array(2*zip_D_CODES+1);
 | |
|     for(i = 0; i < 2*zip_D_CODES+1; i++)
 | |
| 	zip_dyn_dtree[i] = new zip_DeflateCT();
 | |
|     zip_static_ltree = new Array(zip_L_CODES+2);
 | |
|     for(i = 0; i < zip_L_CODES+2; i++)
 | |
| 	zip_static_ltree[i] = new zip_DeflateCT();
 | |
|     zip_static_dtree = new Array(zip_D_CODES);
 | |
|     for(i = 0; i < zip_D_CODES; i++)
 | |
| 	zip_static_dtree[i] = new zip_DeflateCT();
 | |
|     zip_bl_tree = new Array(2*zip_BL_CODES+1);
 | |
|     for(i = 0; i < 2*zip_BL_CODES+1; i++)
 | |
| 	zip_bl_tree[i] = new zip_DeflateCT();
 | |
|     zip_l_desc = new zip_DeflateTreeDesc();
 | |
|     zip_d_desc = new zip_DeflateTreeDesc();
 | |
|     zip_bl_desc = new zip_DeflateTreeDesc();
 | |
|     zip_bl_count = new Array(zip_MAX_BITS+1);
 | |
|     zip_heap = new Array(2*zip_L_CODES+1);
 | |
|     zip_depth = new Array(2*zip_L_CODES+1);
 | |
|     zip_length_code = new Array(zip_MAX_MATCH-zip_MIN_MATCH+1);
 | |
|     zip_dist_code = new Array(512);
 | |
|     zip_base_length = new Array(zip_LENGTH_CODES);
 | |
|     zip_base_dist = new Array(zip_D_CODES);
 | |
|     zip_flag_buf = new Array(parseInt(zip_LIT_BUFSIZE / 8));
 | |
| }
 | |
| 
 | |
| var zip_deflate_end = function() {
 | |
|     zip_free_queue = zip_qhead = zip_qtail = null;
 | |
|     zip_outbuf = null;
 | |
|     zip_window = null;
 | |
|     zip_d_buf = null;
 | |
|     zip_l_buf = null;
 | |
|     zip_prev = null;
 | |
|     zip_dyn_ltree = null;
 | |
|     zip_dyn_dtree = null;
 | |
|     zip_static_ltree = null;
 | |
|     zip_static_dtree = null;
 | |
|     zip_bl_tree = null;
 | |
|     zip_l_desc = null;
 | |
|     zip_d_desc = null;
 | |
|     zip_bl_desc = null;
 | |
|     zip_bl_count = null;
 | |
|     zip_heap = null;
 | |
|     zip_depth = null;
 | |
|     zip_length_code = null;
 | |
|     zip_dist_code = null;
 | |
|     zip_base_length = null;
 | |
|     zip_base_dist = null;
 | |
|     zip_flag_buf = null;
 | |
| }
 | |
| 
 | |
| var zip_reuse_queue = function(p) {
 | |
|     p.next = zip_free_queue;
 | |
|     zip_free_queue = p;
 | |
| }
 | |
| 
 | |
| var zip_new_queue = function() {
 | |
|     var p;
 | |
| 
 | |
|     if(zip_free_queue != null)
 | |
|     {
 | |
| 	p = zip_free_queue;
 | |
| 	zip_free_queue = zip_free_queue.next;
 | |
|     }
 | |
|     else
 | |
| 	p = new zip_DeflateBuffer();
 | |
|     p.next = null;
 | |
|     p.len = p.off = 0;
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| var zip_head1 = function(i) {
 | |
|     return zip_prev[zip_WSIZE + i];
 | |
| }
 | |
| 
 | |
| var zip_head2 = function(i, val) {
 | |
|     return zip_prev[zip_WSIZE + i] = val;
 | |
| }
 | |
| 
 | |
| /* put_byte is used for the compressed output, put_ubyte for the
 | |
|  * uncompressed output. However unlzw() uses window for its
 | |
|  * suffix table instead of its output buffer, so it does not use put_ubyte
 | |
|  * (to be cleaned up).
 | |
|  */
 | |
| var zip_put_byte = function(c) {
 | |
|     zip_outbuf[zip_outoff + zip_outcnt++] = c;
 | |
|     if(zip_outoff + zip_outcnt == zip_OUTBUFSIZ)
 | |
| 	zip_qoutbuf();
 | |
| }
 | |
| 
 | |
| /* Output a 16 bit value, lsb first */
 | |
| var zip_put_short = function(w) {
 | |
|     w &= 0xffff;
 | |
|     if(zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) {
 | |
| 	zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff);
 | |
| 	zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8);
 | |
|     } else {
 | |
| 	zip_put_byte(w & 0xff);
 | |
| 	zip_put_byte(w >>> 8);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Insert string s in the dictionary and set match_head to the previous head
 | |
|  * of the hash chain (the most recent string with same hash key). Return
 | |
|  * the previous length of the hash chain.
 | |
|  * IN  assertion: all calls to to INSERT_STRING are made with consecutive
 | |
|  *    input characters and the first MIN_MATCH bytes of s are valid
 | |
|  *    (except for the last MIN_MATCH-1 bytes of the input file).
 | |
|  */
 | |
| var zip_INSERT_STRING = function() {
 | |
|     zip_ins_h = ((zip_ins_h << zip_H_SHIFT)
 | |
| 		 ^ (zip_window[zip_strstart + zip_MIN_MATCH - 1] & 0xff))
 | |
| 	& zip_HASH_MASK;
 | |
|     zip_hash_head = zip_head1(zip_ins_h);
 | |
|     zip_prev[zip_strstart & zip_WMASK] = zip_hash_head;
 | |
|     zip_head2(zip_ins_h, zip_strstart);
 | |
| }
 | |
| 
 | |
| /* Send a code of the given tree. c and tree must not have side effects */
 | |
| var zip_SEND_CODE = function(c, tree) {
 | |
|     zip_send_bits(tree[c].fc, tree[c].dl);
 | |
| }
 | |
| 
 | |
| /* Mapping from a distance to a distance code. dist is the distance - 1 and
 | |
|  * must not have side effects. dist_code[256] and dist_code[257] are never
 | |
|  * used.
 | |
|  */
 | |
| var zip_D_CODE = function(dist) {
 | |
|     return (dist < 256 ? zip_dist_code[dist]
 | |
| 	    : zip_dist_code[256 + (dist>>7)]) & 0xff;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Compares to subtrees, using the tree depth as tie breaker when
 | |
|  * the subtrees have equal frequency. This minimizes the worst case length.
 | |
|  */
 | |
| var zip_SMALLER = function(tree, n, m) {
 | |
|     return tree[n].fc < tree[m].fc ||
 | |
|       (tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]);
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * read string data
 | |
|  */
 | |
| var zip_read_buff = function(buff, offset, n) {
 | |
|     var i;
 | |
|     for(i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++)
 | |
| 	buff[offset + i] =
 | |
| 	    zip_deflate_data.charCodeAt(zip_deflate_pos++) & 0xff;
 | |
|     return i;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Initialize the "longest match" routines for a new file
 | |
|  */
 | |
| var zip_lm_init = function() {
 | |
|     var j;
 | |
| 
 | |
|     /* Initialize the hash table. */
 | |
|     for(j = 0; j < zip_HASH_SIZE; j++)
 | |
| //	zip_head2(j, zip_NIL);
 | |
| 	zip_prev[zip_WSIZE + j] = 0;
 | |
|     /* prev will be initialized on the fly */
 | |
| 
 | |
|     /* Set the default configuration parameters:
 | |
|      */
 | |
|     zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy;
 | |
|     zip_good_match     = zip_configuration_table[zip_compr_level].good_length;
 | |
|     if(!zip_FULL_SEARCH)
 | |
| 	zip_nice_match = zip_configuration_table[zip_compr_level].nice_length;
 | |
|     zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain;
 | |
| 
 | |
|     zip_strstart = 0;
 | |
|     zip_block_start = 0;
 | |
| 
 | |
|     zip_lookahead = zip_read_buff(zip_window, 0, 2 * zip_WSIZE);
 | |
|     if(zip_lookahead <= 0) {
 | |
| 	zip_eofile = true;
 | |
| 	zip_lookahead = 0;
 | |
| 	return;
 | |
|     }
 | |
|     zip_eofile = false;
 | |
|     /* Make sure that we always have enough lookahead. This is important
 | |
|      * if input comes from a device such as a tty.
 | |
|      */
 | |
|     while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
 | |
| 	zip_fill_window();
 | |
| 
 | |
|     /* If lookahead < MIN_MATCH, ins_h is garbage, but this is
 | |
|      * not important since only literal bytes will be emitted.
 | |
|      */
 | |
|     zip_ins_h = 0;
 | |
|     for(j = 0; j < zip_MIN_MATCH - 1; j++) {
 | |
| //      UPDATE_HASH(ins_h, window[j]);
 | |
| 	zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Set match_start to the longest match starting at the given string and
 | |
|  * return its length. Matches shorter or equal to prev_length are discarded,
 | |
|  * in which case the result is equal to prev_length and match_start is
 | |
|  * garbage.
 | |
|  * IN assertions: cur_match is the head of the hash chain for the current
 | |
|  *   string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
 | |
|  */
 | |
| var zip_longest_match = function(cur_match) {
 | |
|     var chain_length = zip_max_chain_length; // max hash chain length
 | |
|     var scanp = zip_strstart; // current string
 | |
|     var matchp;		// matched string
 | |
|     var len;		// length of current match
 | |
|     var best_len = zip_prev_length;	// best match length so far
 | |
| 
 | |
|     /* Stop when cur_match becomes <= limit. To simplify the code,
 | |
|      * we prevent matches with the string of window index 0.
 | |
|      */
 | |
|     var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL);
 | |
| 
 | |
|     var strendp = zip_strstart + zip_MAX_MATCH;
 | |
|     var scan_end1 = zip_window[scanp + best_len - 1];
 | |
|     var scan_end  = zip_window[scanp + best_len];
 | |
| 
 | |
|     /* Do not waste too much time if we already have a good match: */
 | |
|     if(zip_prev_length >= zip_good_match)
 | |
| 	chain_length >>= 2;
 | |
| 
 | |
| //  Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead");
 | |
| 
 | |
|     do {
 | |
| //    Assert(cur_match < encoder->strstart, "no future");
 | |
| 	matchp = cur_match;
 | |
| 
 | |
| 	/* Skip to next match if the match length cannot increase
 | |
| 	    * or if the match length is less than 2:
 | |
| 	*/
 | |
| 	if(zip_window[matchp + best_len]	!= scan_end  ||
 | |
| 	   zip_window[matchp + best_len - 1]	!= scan_end1 ||
 | |
| 	   zip_window[matchp]			!= zip_window[scanp] ||
 | |
| 	   zip_window[++matchp]			!= zip_window[scanp + 1]) {
 | |
| 	    continue;
 | |
| 	}
 | |
| 
 | |
| 	/* The check at best_len-1 can be removed because it will be made
 | |
|          * again later. (This heuristic is not always a win.)
 | |
|          * It is not necessary to compare scan[2] and match[2] since they
 | |
|          * are always equal when the other bytes match, given that
 | |
|          * the hash keys are equal and that HASH_BITS >= 8.
 | |
|          */
 | |
| 	scanp += 2;
 | |
| 	matchp++;
 | |
| 
 | |
| 	/* We check for insufficient lookahead only every 8th comparison;
 | |
|          * the 256th check will be made at strstart+258.
 | |
|          */
 | |
| 	do {
 | |
| 	} while(zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		zip_window[++scanp] == zip_window[++matchp] &&
 | |
| 		scanp < strendp);
 | |
| 
 | |
|       len = zip_MAX_MATCH - (strendp - scanp);
 | |
|       scanp = strendp - zip_MAX_MATCH;
 | |
| 
 | |
|       if(len > best_len) {
 | |
| 	  zip_match_start = cur_match;
 | |
| 	  best_len = len;
 | |
| 	  if(zip_FULL_SEARCH) {
 | |
| 	      if(len >= zip_MAX_MATCH) break;
 | |
| 	  } else {
 | |
| 	      if(len >= zip_nice_match) break;
 | |
| 	  }
 | |
| 
 | |
| 	  scan_end1  = zip_window[scanp + best_len-1];
 | |
| 	  scan_end   = zip_window[scanp + best_len];
 | |
|       }
 | |
|     } while((cur_match = zip_prev[cur_match & zip_WMASK]) > limit
 | |
| 	    && --chain_length != 0);
 | |
| 
 | |
|     return best_len;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Fill the window when the lookahead becomes insufficient.
 | |
|  * Updates strstart and lookahead, and sets eofile if end of input file.
 | |
|  * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
 | |
|  * OUT assertions: at least one byte has been read, or eofile is set;
 | |
|  *    file reads are performed for at least two bytes (required for the
 | |
|  *    translate_eol option).
 | |
|  */
 | |
| var zip_fill_window = function() {
 | |
|     var n, m;
 | |
| 
 | |
|     // Amount of free space at the end of the window.
 | |
|     var more = zip_window_size - zip_lookahead - zip_strstart;
 | |
| 
 | |
|     /* If the window is almost full and there is insufficient lookahead,
 | |
|      * move the upper half to the lower one to make room in the upper half.
 | |
|      */
 | |
|     if(more == -1) {
 | |
| 	/* Very unlikely, but possible on 16 bit machine if strstart == 0
 | |
|          * and lookahead == 1 (input done one byte at time)
 | |
|          */
 | |
| 	more--;
 | |
|     } else if(zip_strstart >= zip_WSIZE + zip_MAX_DIST) {
 | |
| 	/* By the IN assertion, the window is not empty so we can't confuse
 | |
|          * more == 0 with more == 64K on a 16 bit machine.
 | |
|          */
 | |
| //	Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM");
 | |
| 
 | |
| //	System.arraycopy(window, WSIZE, window, 0, WSIZE);
 | |
| 	for(n = 0; n < zip_WSIZE; n++)
 | |
| 	    zip_window[n] = zip_window[n + zip_WSIZE];
 | |
|       
 | |
| 	zip_match_start -= zip_WSIZE;
 | |
| 	zip_strstart    -= zip_WSIZE; /* we now have strstart >= MAX_DIST: */
 | |
| 	zip_block_start -= zip_WSIZE;
 | |
| 
 | |
| 	for(n = 0; n < zip_HASH_SIZE; n++) {
 | |
| 	    m = zip_head1(n);
 | |
| 	    zip_head2(n, m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL);
 | |
| 	}
 | |
| 	for(n = 0; n < zip_WSIZE; n++) {
 | |
| 	    /* If n is not on any hash chain, prev[n] is garbage but
 | |
| 	     * its value will never be used.
 | |
| 	     */
 | |
| 	    m = zip_prev[n];
 | |
| 	    zip_prev[n] = (m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL);
 | |
| 	}
 | |
| 	more += zip_WSIZE;
 | |
|     }
 | |
|     // At this point, more >= 2
 | |
|     if(!zip_eofile) {
 | |
| 	n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more);
 | |
| 	if(n <= 0)
 | |
| 	    zip_eofile = true;
 | |
| 	else
 | |
| 	    zip_lookahead += n;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Processes a new input file and return its compressed length. This
 | |
|  * function does not perform lazy evaluationof matches and inserts
 | |
|  * new strings in the dictionary only for unmatched strings or for short
 | |
|  * matches. It is used only for the fast compression options.
 | |
|  */
 | |
| var zip_deflate_fast = function() {
 | |
|     while(zip_lookahead != 0 && zip_qhead == null) {
 | |
| 	var flush; // set if current block must be flushed
 | |
| 
 | |
| 	/* Insert the string window[strstart .. strstart+2] in the
 | |
| 	 * dictionary, and set hash_head to the head of the hash chain:
 | |
| 	 */
 | |
| 	zip_INSERT_STRING();
 | |
| 
 | |
| 	/* Find the longest match, discarding those <= prev_length.
 | |
| 	 * At this point we have always match_length < MIN_MATCH
 | |
| 	 */
 | |
| 	if(zip_hash_head != zip_NIL &&
 | |
| 	   zip_strstart - zip_hash_head <= zip_MAX_DIST) {
 | |
| 	    /* To simplify the code, we prevent matches with the string
 | |
| 	     * of window index 0 (in particular we have to avoid a match
 | |
| 	     * of the string with itself at the start of the input file).
 | |
| 	     */
 | |
| 	    zip_match_length = zip_longest_match(zip_hash_head);
 | |
| 	    /* longest_match() sets match_start */
 | |
| 	    if(zip_match_length > zip_lookahead)
 | |
| 		zip_match_length = zip_lookahead;
 | |
| 	}
 | |
| 	if(zip_match_length >= zip_MIN_MATCH) {
 | |
| //	    check_match(strstart, match_start, match_length);
 | |
| 
 | |
| 	    flush = zip_ct_tally(zip_strstart - zip_match_start,
 | |
| 				 zip_match_length - zip_MIN_MATCH);
 | |
| 	    zip_lookahead -= zip_match_length;
 | |
| 
 | |
| 	    /* Insert new strings in the hash table only if the match length
 | |
| 	     * is not too large. This saves time but degrades compression.
 | |
| 	     */
 | |
| 	    if(zip_match_length <= zip_max_lazy_match) {
 | |
| 		zip_match_length--; // string at strstart already in hash table
 | |
| 		do {
 | |
| 		    zip_strstart++;
 | |
| 		    zip_INSERT_STRING();
 | |
| 		    /* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
| 		     * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
 | |
| 		     * these bytes are garbage, but it does not matter since
 | |
| 		     * the next lookahead bytes will be emitted as literals.
 | |
| 		     */
 | |
| 		} while(--zip_match_length != 0);
 | |
| 		zip_strstart++;
 | |
| 	    } else {
 | |
| 		zip_strstart += zip_match_length;
 | |
| 		zip_match_length = 0;
 | |
| 		zip_ins_h = zip_window[zip_strstart] & 0xff;
 | |
| //		UPDATE_HASH(ins_h, window[strstart + 1]);
 | |
| 		zip_ins_h = ((zip_ins_h<<zip_H_SHIFT) ^ (zip_window[zip_strstart + 1] & 0xff)) & zip_HASH_MASK;
 | |
| 
 | |
| //#if MIN_MATCH != 3
 | |
| //		Call UPDATE_HASH() MIN_MATCH-3 more times
 | |
| //#endif
 | |
| 
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    /* No match, output a literal byte */
 | |
| 	    flush = zip_ct_tally(0, zip_window[zip_strstart] & 0xff);
 | |
| 	    zip_lookahead--;
 | |
| 	    zip_strstart++;
 | |
| 	}
 | |
| 	if(flush) {
 | |
| 	    zip_flush_block(0);
 | |
| 	    zip_block_start = zip_strstart;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure that we always have enough lookahead, except
 | |
| 	 * at the end of the input file. We need MAX_MATCH bytes
 | |
| 	 * for the next match, plus MIN_MATCH bytes to insert the
 | |
| 	 * string following the next match.
 | |
| 	 */
 | |
| 	while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
 | |
| 	    zip_fill_window();
 | |
|     }
 | |
| }
 | |
| 
 | |
| var zip_deflate_better = function() {
 | |
|     /* Process the input block. */
 | |
|     while(zip_lookahead != 0 && zip_qhead == null) {
 | |
| 	/* Insert the string window[strstart .. strstart+2] in the
 | |
| 	 * dictionary, and set hash_head to the head of the hash chain:
 | |
| 	 */
 | |
| 	zip_INSERT_STRING();
 | |
| 
 | |
| 	/* Find the longest match, discarding those <= prev_length.
 | |
| 	 */
 | |
| 	zip_prev_length = zip_match_length;
 | |
| 	zip_prev_match = zip_match_start;
 | |
| 	zip_match_length = zip_MIN_MATCH - 1;
 | |
| 
 | |
| 	if(zip_hash_head != zip_NIL &&
 | |
| 	   zip_prev_length < zip_max_lazy_match &&
 | |
| 	   zip_strstart - zip_hash_head <= zip_MAX_DIST) {
 | |
| 	    /* To simplify the code, we prevent matches with the string
 | |
| 	     * of window index 0 (in particular we have to avoid a match
 | |
| 	     * of the string with itself at the start of the input file).
 | |
| 	     */
 | |
| 	    zip_match_length = zip_longest_match(zip_hash_head);
 | |
| 	    /* longest_match() sets match_start */
 | |
| 	    if(zip_match_length > zip_lookahead)
 | |
| 		zip_match_length = zip_lookahead;
 | |
| 
 | |
| 	    /* Ignore a length 3 match if it is too distant: */
 | |
| 	    if(zip_match_length == zip_MIN_MATCH &&
 | |
| 	       zip_strstart - zip_match_start > zip_TOO_FAR) {
 | |
| 		/* If prev_match is also MIN_MATCH, match_start is garbage
 | |
| 		 * but we will ignore the current match anyway.
 | |
| 		 */
 | |
| 		zip_match_length--;
 | |
| 	    }
 | |
| 	}
 | |
| 	/* If there was a match at the previous step and the current
 | |
| 	 * match is not better, output the previous match:
 | |
| 	 */
 | |
| 	if(zip_prev_length >= zip_MIN_MATCH &&
 | |
| 	   zip_match_length <= zip_prev_length) {
 | |
| 	    var flush; // set if current block must be flushed
 | |
| 
 | |
| //	    check_match(strstart - 1, prev_match, prev_length);
 | |
| 	    flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match,
 | |
| 				 zip_prev_length - zip_MIN_MATCH);
 | |
| 
 | |
| 	    /* Insert in hash table all strings up to the end of the match.
 | |
| 	     * strstart-1 and strstart are already inserted.
 | |
| 	     */
 | |
| 	    zip_lookahead -= zip_prev_length - 1;
 | |
| 	    zip_prev_length -= 2;
 | |
| 	    do {
 | |
| 		zip_strstart++;
 | |
| 		zip_INSERT_STRING();
 | |
| 		/* strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
| 		 * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
 | |
| 		 * these bytes are garbage, but it does not matter since the
 | |
| 		 * next lookahead bytes will always be emitted as literals.
 | |
| 		 */
 | |
| 	    } while(--zip_prev_length != 0);
 | |
| 	    zip_match_available = 0;
 | |
| 	    zip_match_length = zip_MIN_MATCH - 1;
 | |
| 	    zip_strstart++;
 | |
| 	    if(flush) {
 | |
| 		zip_flush_block(0);
 | |
| 		zip_block_start = zip_strstart;
 | |
| 	    }
 | |
| 	} else if(zip_match_available != 0) {
 | |
| 	    /* If there was no match at the previous position, output a
 | |
| 	     * single literal. If there was a match but the current match
 | |
| 	     * is longer, truncate the previous match to a single literal.
 | |
| 	     */
 | |
| 	    if(zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) {
 | |
| 		zip_flush_block(0);
 | |
| 		zip_block_start = zip_strstart;
 | |
| 	    }
 | |
| 	    zip_strstart++;
 | |
| 	    zip_lookahead--;
 | |
| 	} else {
 | |
| 	    /* There is no previous match to compare with, wait for
 | |
| 	     * the next step to decide.
 | |
| 	     */
 | |
| 	    zip_match_available = 1;
 | |
| 	    zip_strstart++;
 | |
| 	    zip_lookahead--;
 | |
| 	}
 | |
| 
 | |
| 	/* Make sure that we always have enough lookahead, except
 | |
| 	 * at the end of the input file. We need MAX_MATCH bytes
 | |
| 	 * for the next match, plus MIN_MATCH bytes to insert the
 | |
| 	 * string following the next match.
 | |
| 	 */
 | |
| 	while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
 | |
| 	    zip_fill_window();
 | |
|     }
 | |
| }
 | |
| 
 | |
| var zip_init_deflate = function() {
 | |
|     if(zip_eofile)
 | |
| 	return;
 | |
|     zip_bi_buf = 0;
 | |
|     zip_bi_valid = 0;
 | |
|     zip_ct_init();
 | |
|     zip_lm_init();
 | |
| 
 | |
|     zip_qhead = null;
 | |
|     zip_outcnt = 0;
 | |
|     zip_outoff = 0;
 | |
| 
 | |
|     if(zip_compr_level <= 3)
 | |
|     {
 | |
| 	zip_prev_length = zip_MIN_MATCH - 1;
 | |
| 	zip_match_length = 0;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
| 	zip_match_length = zip_MIN_MATCH - 1;
 | |
| 	zip_match_available = 0;
 | |
|     }
 | |
| 
 | |
|     zip_complete = false;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Same as above, but achieves better compression. We use a lazy
 | |
|  * evaluation for matches: a match is finally adopted only if there is
 | |
|  * no better match at the next window position.
 | |
|  */
 | |
| var zip_deflate_internal = function(buff, off, buff_size) {
 | |
|     var n;
 | |
| 
 | |
|     if(!zip_initflag)
 | |
|     {
 | |
| 	zip_init_deflate();
 | |
| 	zip_initflag = true;
 | |
| 	if(zip_lookahead == 0) { // empty
 | |
| 	    zip_complete = true;
 | |
| 	    return 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if((n = zip_qcopy(buff, off, buff_size)) == buff_size)
 | |
| 	return buff_size;
 | |
| 
 | |
|     if(zip_complete)
 | |
| 	return n;
 | |
| 
 | |
|     if(zip_compr_level <= 3) // optimized for speed
 | |
| 	zip_deflate_fast();
 | |
|     else
 | |
| 	zip_deflate_better();
 | |
|     if(zip_lookahead == 0) {
 | |
| 	if(zip_match_available != 0)
 | |
| 	    zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff);
 | |
| 	zip_flush_block(1);
 | |
| 	zip_complete = true;
 | |
|     }
 | |
|     return n + zip_qcopy(buff, n + off, buff_size - n);
 | |
| }
 | |
| 
 | |
| var zip_qcopy = function(buff, off, buff_size) {
 | |
|     var n, i, j;
 | |
| 
 | |
|     n = 0;
 | |
|     while(zip_qhead != null && n < buff_size)
 | |
|     {
 | |
| 	i = buff_size - n;
 | |
| 	if(i > zip_qhead.len)
 | |
| 	    i = zip_qhead.len;
 | |
| //      System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i);
 | |
| 	for(j = 0; j < i; j++)
 | |
| 	    buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j];
 | |
| 	
 | |
| 	zip_qhead.off += i;
 | |
| 	zip_qhead.len -= i;
 | |
| 	n += i;
 | |
| 	if(zip_qhead.len == 0) {
 | |
| 	    var p;
 | |
| 	    p = zip_qhead;
 | |
| 	    zip_qhead = zip_qhead.next;
 | |
| 	    zip_reuse_queue(p);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if(n == buff_size)
 | |
| 	return n;
 | |
| 
 | |
|     if(zip_outoff < zip_outcnt) {
 | |
| 	i = buff_size - n;
 | |
| 	if(i > zip_outcnt - zip_outoff)
 | |
| 	    i = zip_outcnt - zip_outoff;
 | |
| 	// System.arraycopy(outbuf, outoff, buff, off + n, i);
 | |
| 	for(j = 0; j < i; j++)
 | |
| 	    buff[off + n + j] = zip_outbuf[zip_outoff + j];
 | |
| 	zip_outoff += i;
 | |
| 	n += i;
 | |
| 	if(zip_outcnt == zip_outoff)
 | |
| 	    zip_outcnt = zip_outoff = 0;
 | |
|     }
 | |
|     return n;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Allocate the match buffer, initialize the various tables and save the
 | |
|  * location of the internal file attribute (ascii/binary) and method
 | |
|  * (DEFLATE/STORE).
 | |
|  */
 | |
| var zip_ct_init = function() {
 | |
|     var n;	// iterates over tree elements
 | |
|     var bits;	// bit counter
 | |
|     var length;	// length value
 | |
|     var code;	// code value
 | |
|     var dist;	// distance index
 | |
| 
 | |
|     if(zip_static_dtree[0].dl != 0) return; // ct_init already called
 | |
| 
 | |
|     zip_l_desc.dyn_tree		= zip_dyn_ltree;
 | |
|     zip_l_desc.static_tree	= zip_static_ltree;
 | |
|     zip_l_desc.extra_bits	= zip_extra_lbits;
 | |
|     zip_l_desc.extra_base	= zip_LITERALS + 1;
 | |
|     zip_l_desc.elems		= zip_L_CODES;
 | |
|     zip_l_desc.max_length	= zip_MAX_BITS;
 | |
|     zip_l_desc.max_code		= 0;
 | |
| 
 | |
|     zip_d_desc.dyn_tree		= zip_dyn_dtree;
 | |
|     zip_d_desc.static_tree	= zip_static_dtree;
 | |
|     zip_d_desc.extra_bits	= zip_extra_dbits;
 | |
|     zip_d_desc.extra_base	= 0;
 | |
|     zip_d_desc.elems		= zip_D_CODES;
 | |
|     zip_d_desc.max_length	= zip_MAX_BITS;
 | |
|     zip_d_desc.max_code		= 0;
 | |
| 
 | |
|     zip_bl_desc.dyn_tree	= zip_bl_tree;
 | |
|     zip_bl_desc.static_tree	= null;
 | |
|     zip_bl_desc.extra_bits	= zip_extra_blbits;
 | |
|     zip_bl_desc.extra_base	= 0;
 | |
|     zip_bl_desc.elems		= zip_BL_CODES;
 | |
|     zip_bl_desc.max_length	= zip_MAX_BL_BITS;
 | |
|     zip_bl_desc.max_code	= 0;
 | |
| 
 | |
|     // Initialize the mapping length (0..255) -> length code (0..28)
 | |
|     length = 0;
 | |
|     for(code = 0; code < zip_LENGTH_CODES-1; code++) {
 | |
| 	zip_base_length[code] = length;
 | |
| 	for(n = 0; n < (1<<zip_extra_lbits[code]); n++)
 | |
| 	    zip_length_code[length++] = code;
 | |
|     }
 | |
|     // Assert (length == 256, "ct_init: length != 256");
 | |
| 
 | |
|     /* Note that the length 255 (match length 258) can be represented
 | |
|      * in two different ways: code 284 + 5 bits or code 285, so we
 | |
|      * overwrite length_code[255] to use the best encoding:
 | |
|      */
 | |
|     zip_length_code[length-1] = code;
 | |
| 
 | |
|     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
 | |
|     dist = 0;
 | |
|     for(code = 0 ; code < 16; code++) {
 | |
| 	zip_base_dist[code] = dist;
 | |
| 	for(n = 0; n < (1<<zip_extra_dbits[code]); n++) {
 | |
| 	    zip_dist_code[dist++] = code;
 | |
| 	}
 | |
|     }
 | |
|     // Assert (dist == 256, "ct_init: dist != 256");
 | |
|     dist >>= 7; // from now on, all distances are divided by 128
 | |
|     for( ; code < zip_D_CODES; code++) {
 | |
| 	zip_base_dist[code] = dist << 7;
 | |
| 	for(n = 0; n < (1<<(zip_extra_dbits[code]-7)); n++)
 | |
| 	    zip_dist_code[256 + dist++] = code;
 | |
|     }
 | |
|     // Assert (dist == 256, "ct_init: 256+dist != 512");
 | |
| 
 | |
|     // Construct the codes of the static literal tree
 | |
|     for(bits = 0; bits <= zip_MAX_BITS; bits++)
 | |
| 	zip_bl_count[bits] = 0;
 | |
|     n = 0;
 | |
|     while(n <= 143) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; }
 | |
|     while(n <= 255) { zip_static_ltree[n++].dl = 9; zip_bl_count[9]++; }
 | |
|     while(n <= 279) { zip_static_ltree[n++].dl = 7; zip_bl_count[7]++; }
 | |
|     while(n <= 287) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; }
 | |
|     /* Codes 286 and 287 do not exist, but we must include them in the
 | |
|      * tree construction to get a canonical Huffman tree (longest code
 | |
|      * all ones)
 | |
|      */
 | |
|     zip_gen_codes(zip_static_ltree, zip_L_CODES + 1);
 | |
| 
 | |
|     /* The static distance tree is trivial: */
 | |
|     for(n = 0; n < zip_D_CODES; n++) {
 | |
| 	zip_static_dtree[n].dl = 5;
 | |
| 	zip_static_dtree[n].fc = zip_bi_reverse(n, 5);
 | |
|     }
 | |
| 
 | |
|     // Initialize the first block of the first file:
 | |
|     zip_init_block();
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Initialize a new block.
 | |
|  */
 | |
| var zip_init_block = function() {
 | |
|     var n; // iterates over tree elements
 | |
| 
 | |
|     // Initialize the trees.
 | |
|     for(n = 0; n < zip_L_CODES;  n++) zip_dyn_ltree[n].fc = 0;
 | |
|     for(n = 0; n < zip_D_CODES;  n++) zip_dyn_dtree[n].fc = 0;
 | |
|     for(n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0;
 | |
| 
 | |
|     zip_dyn_ltree[zip_END_BLOCK].fc = 1;
 | |
|     zip_opt_len = zip_static_len = 0;
 | |
|     zip_last_lit = zip_last_dist = zip_last_flags = 0;
 | |
|     zip_flags = 0;
 | |
|     zip_flag_bit = 1;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Restore the heap property by moving down the tree starting at node k,
 | |
|  * exchanging a node with the smallest of its two sons if necessary, stopping
 | |
|  * when the heap property is re-established (each father smaller than its
 | |
|  * two sons).
 | |
|  */
 | |
| var zip_pqdownheap = function(
 | |
|     tree,	// the tree to restore
 | |
|     k) {	// node to move down
 | |
|     var v = zip_heap[k];
 | |
|     var j = k << 1;	// left son of k
 | |
| 
 | |
|     while(j <= zip_heap_len) {
 | |
| 	// Set j to the smallest of the two sons:
 | |
| 	if(j < zip_heap_len &&
 | |
| 	   zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j]))
 | |
| 	    j++;
 | |
| 
 | |
| 	// Exit if v is smaller than both sons
 | |
| 	if(zip_SMALLER(tree, v, zip_heap[j]))
 | |
| 	    break;
 | |
| 
 | |
| 	// Exchange v with the smallest son
 | |
| 	zip_heap[k] = zip_heap[j];
 | |
| 	k = j;
 | |
| 
 | |
| 	// And continue down the tree, setting j to the left son of k
 | |
| 	j <<= 1;
 | |
|     }
 | |
|     zip_heap[k] = v;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Compute the optimal bit lengths for a tree and update the total bit length
 | |
|  * for the current block.
 | |
|  * IN assertion: the fields freq and dad are set, heap[heap_max] and
 | |
|  *    above are the tree nodes sorted by increasing frequency.
 | |
|  * OUT assertions: the field len is set to the optimal bit length, the
 | |
|  *     array bl_count contains the frequencies for each bit length.
 | |
|  *     The length opt_len is updated; static_len is also updated if stree is
 | |
|  *     not null.
 | |
|  */
 | |
| var zip_gen_bitlen = function(desc) { // the tree descriptor
 | |
|     var tree		= desc.dyn_tree;
 | |
|     var extra		= desc.extra_bits;
 | |
|     var base		= desc.extra_base;
 | |
|     var max_code	= desc.max_code;
 | |
|     var max_length	= desc.max_length;
 | |
|     var stree		= desc.static_tree;
 | |
|     var h;		// heap index
 | |
|     var n, m;		// iterate over the tree elements
 | |
|     var bits;		// bit length
 | |
|     var xbits;		// extra bits
 | |
|     var f;		// frequency
 | |
|     var overflow = 0;	// number of elements with bit length too large
 | |
| 
 | |
|     for(bits = 0; bits <= zip_MAX_BITS; bits++)
 | |
| 	zip_bl_count[bits] = 0;
 | |
| 
 | |
|     /* In a first pass, compute the optimal bit lengths (which may
 | |
|      * overflow in the case of the bit length tree).
 | |
|      */
 | |
|     tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap
 | |
| 
 | |
|     for(h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) {
 | |
| 	n = zip_heap[h];
 | |
| 	bits = tree[tree[n].dl].dl + 1;
 | |
| 	if(bits > max_length) {
 | |
| 	    bits = max_length;
 | |
| 	    overflow++;
 | |
| 	}
 | |
| 	tree[n].dl = bits;
 | |
| 	// We overwrite tree[n].dl which is no longer needed
 | |
| 
 | |
| 	if(n > max_code)
 | |
| 	    continue; // not a leaf node
 | |
| 
 | |
| 	zip_bl_count[bits]++;
 | |
| 	xbits = 0;
 | |
| 	if(n >= base)
 | |
| 	    xbits = extra[n - base];
 | |
| 	f = tree[n].fc;
 | |
| 	zip_opt_len += f * (bits + xbits);
 | |
| 	if(stree != null)
 | |
| 	    zip_static_len += f * (stree[n].dl + xbits);
 | |
|     }
 | |
|     if(overflow == 0)
 | |
| 	return;
 | |
| 
 | |
|     // This happens for example on obj2 and pic of the Calgary corpus
 | |
| 
 | |
|     // Find the first bit length which could increase:
 | |
|     do {
 | |
| 	bits = max_length - 1;
 | |
| 	while(zip_bl_count[bits] == 0)
 | |
| 	    bits--;
 | |
| 	zip_bl_count[bits]--;		// move one leaf down the tree
 | |
| 	zip_bl_count[bits + 1] += 2;	// move one overflow item as its brother
 | |
| 	zip_bl_count[max_length]--;
 | |
| 	/* The brother of the overflow item also moves one step up,
 | |
| 	 * but this does not affect bl_count[max_length]
 | |
| 	 */
 | |
| 	overflow -= 2;
 | |
|     } while(overflow > 0);
 | |
| 
 | |
|     /* Now recompute all bit lengths, scanning in increasing frequency.
 | |
|      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
 | |
|      * lengths instead of fixing only the wrong ones. This idea is taken
 | |
|      * from 'ar' written by Haruhiko Okumura.)
 | |
|      */
 | |
|     for(bits = max_length; bits != 0; bits--) {
 | |
| 	n = zip_bl_count[bits];
 | |
| 	while(n != 0) {
 | |
| 	    m = zip_heap[--h];
 | |
| 	    if(m > max_code)
 | |
| 		continue;
 | |
| 	    if(tree[m].dl != bits) {
 | |
| 		zip_opt_len += (bits - tree[m].dl) * tree[m].fc;
 | |
| 		tree[m].fc = bits;
 | |
| 	    }
 | |
| 	    n--;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
|   /* ==========================================================================
 | |
|    * Generate the codes for a given tree and bit counts (which need not be
 | |
|    * optimal).
 | |
|    * IN assertion: the array bl_count contains the bit length statistics for
 | |
|    * the given tree and the field len is set for all tree elements.
 | |
|    * OUT assertion: the field code is set for all tree elements of non
 | |
|    *     zero code length.
 | |
|    */
 | |
| var zip_gen_codes = function(tree,	// the tree to decorate
 | |
| 		   max_code) {	// largest code with non zero frequency
 | |
|     var next_code = new Array(zip_MAX_BITS+1); // next code value for each bit length
 | |
|     var code = 0;		// running code value
 | |
|     var bits;			// bit index
 | |
|     var n;			// code index
 | |
| 
 | |
|     /* The distribution counts are first used to generate the code values
 | |
|      * without bit reversal.
 | |
|      */
 | |
|     for(bits = 1; bits <= zip_MAX_BITS; bits++) {
 | |
| 	code = ((code + zip_bl_count[bits-1]) << 1);
 | |
| 	next_code[bits] = code;
 | |
|     }
 | |
| 
 | |
|     /* Check that the bit counts in bl_count are consistent. The last code
 | |
|      * must be all ones.
 | |
|      */
 | |
| //    Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
 | |
| //	    "inconsistent bit counts");
 | |
| //    Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
 | |
| 
 | |
|     for(n = 0; n <= max_code; n++) {
 | |
| 	var len = tree[n].dl;
 | |
| 	if(len == 0)
 | |
| 	    continue;
 | |
| 	// Now reverse the bits
 | |
| 	tree[n].fc = zip_bi_reverse(next_code[len]++, len);
 | |
| 
 | |
| //      Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
 | |
| //	  n, (isgraph(n) ? n : ' '), len, tree[n].fc, next_code[len]-1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Construct one Huffman tree and assigns the code bit strings and lengths.
 | |
|  * Update the total bit length for the current block.
 | |
|  * IN assertion: the field freq is set for all tree elements.
 | |
|  * OUT assertions: the fields len and code are set to the optimal bit length
 | |
|  *     and corresponding code. The length opt_len is updated; static_len is
 | |
|  *     also updated if stree is not null. The field max_code is set.
 | |
|  */
 | |
| var zip_build_tree = function(desc) { // the tree descriptor
 | |
|     var tree	= desc.dyn_tree;
 | |
|     var stree	= desc.static_tree;
 | |
|     var elems	= desc.elems;
 | |
|     var n, m;		// iterate over heap elements
 | |
|     var max_code = -1;	// largest code with non zero frequency
 | |
|     var node = elems;	// next internal node of the tree
 | |
| 
 | |
|     /* Construct the initial heap, with least frequent element in
 | |
|      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
 | |
|      * heap[0] is not used.
 | |
|      */
 | |
|     zip_heap_len = 0;
 | |
|     zip_heap_max = zip_HEAP_SIZE;
 | |
| 
 | |
|     for(n = 0; n < elems; n++) {
 | |
| 	if(tree[n].fc != 0) {
 | |
| 	    zip_heap[++zip_heap_len] = max_code = n;
 | |
| 	    zip_depth[n] = 0;
 | |
| 	} else
 | |
| 	    tree[n].dl = 0;
 | |
|     }
 | |
| 
 | |
|     /* The pkzip format requires that at least one distance code exists,
 | |
|      * and that at least one bit should be sent even if there is only one
 | |
|      * possible code. So to avoid special checks later on we force at least
 | |
|      * two codes of non zero frequency.
 | |
|      */
 | |
|     while(zip_heap_len < 2) {
 | |
| 	var xnew = zip_heap[++zip_heap_len] = (max_code < 2 ? ++max_code : 0);
 | |
| 	tree[xnew].fc = 1;
 | |
| 	zip_depth[xnew] = 0;
 | |
| 	zip_opt_len--;
 | |
| 	if(stree != null)
 | |
| 	    zip_static_len -= stree[xnew].dl;
 | |
| 	// new is 0 or 1 so it does not have extra bits
 | |
|     }
 | |
|     desc.max_code = max_code;
 | |
| 
 | |
|     /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
 | |
|      * establish sub-heaps of increasing lengths:
 | |
|      */
 | |
|     for(n = zip_heap_len >> 1; n >= 1; n--)
 | |
| 	zip_pqdownheap(tree, n);
 | |
| 
 | |
|     /* Construct the Huffman tree by repeatedly combining the least two
 | |
|      * frequent nodes.
 | |
|      */
 | |
|     do {
 | |
| 	n = zip_heap[zip_SMALLEST];
 | |
| 	zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--];
 | |
| 	zip_pqdownheap(tree, zip_SMALLEST);
 | |
| 
 | |
| 	m = zip_heap[zip_SMALLEST];  // m = node of next least frequency
 | |
| 
 | |
| 	// keep the nodes sorted by frequency
 | |
| 	zip_heap[--zip_heap_max] = n;
 | |
| 	zip_heap[--zip_heap_max] = m;
 | |
| 
 | |
| 	// Create a new node father of n and m
 | |
| 	tree[node].fc = tree[n].fc + tree[m].fc;
 | |
| //	depth[node] = (char)(MAX(depth[n], depth[m]) + 1);
 | |
| 	if(zip_depth[n] > zip_depth[m] + 1)
 | |
| 	    zip_depth[node] = zip_depth[n];
 | |
| 	else
 | |
| 	    zip_depth[node] = zip_depth[m] + 1;
 | |
| 	tree[n].dl = tree[m].dl = node;
 | |
| 
 | |
| 	// and insert the new node in the heap
 | |
| 	zip_heap[zip_SMALLEST] = node++;
 | |
| 	zip_pqdownheap(tree, zip_SMALLEST);
 | |
| 
 | |
|     } while(zip_heap_len >= 2);
 | |
| 
 | |
|     zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST];
 | |
| 
 | |
|     /* At this point, the fields freq and dad are set. We can now
 | |
|      * generate the bit lengths.
 | |
|      */
 | |
|     zip_gen_bitlen(desc);
 | |
| 
 | |
|     // The field len is now set, we can generate the bit codes
 | |
|     zip_gen_codes(tree, max_code);
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Scan a literal or distance tree to determine the frequencies of the codes
 | |
|  * in the bit length tree. Updates opt_len to take into account the repeat
 | |
|  * counts. (The contribution of the bit length codes will be added later
 | |
|  * during the construction of bl_tree.)
 | |
|  */
 | |
| var zip_scan_tree = function(tree,// the tree to be scanned
 | |
| 		       max_code) {  // and its largest code of non zero frequency
 | |
|     var n;			// iterates over all tree elements
 | |
|     var prevlen = -1;		// last emitted length
 | |
|     var curlen;			// length of current code
 | |
|     var nextlen = tree[0].dl;	// length of next code
 | |
|     var count = 0;		// repeat count of the current code
 | |
|     var max_count = 7;		// max repeat count
 | |
|     var min_count = 4;		// min repeat count
 | |
| 
 | |
|     if(nextlen == 0) {
 | |
| 	max_count = 138;
 | |
| 	min_count = 3;
 | |
|     }
 | |
|     tree[max_code + 1].dl = 0xffff; // guard
 | |
| 
 | |
|     for(n = 0; n <= max_code; n++) {
 | |
| 	curlen = nextlen;
 | |
| 	nextlen = tree[n + 1].dl;
 | |
| 	if(++count < max_count && curlen == nextlen)
 | |
| 	    continue;
 | |
| 	else if(count < min_count)
 | |
| 	    zip_bl_tree[curlen].fc += count;
 | |
| 	else if(curlen != 0) {
 | |
| 	    if(curlen != prevlen)
 | |
| 		zip_bl_tree[curlen].fc++;
 | |
| 	    zip_bl_tree[zip_REP_3_6].fc++;
 | |
| 	} else if(count <= 10)
 | |
| 	    zip_bl_tree[zip_REPZ_3_10].fc++;
 | |
| 	else
 | |
| 	    zip_bl_tree[zip_REPZ_11_138].fc++;
 | |
| 	count = 0; prevlen = curlen;
 | |
| 	if(nextlen == 0) {
 | |
| 	    max_count = 138;
 | |
| 	    min_count = 3;
 | |
| 	} else if(curlen == nextlen) {
 | |
| 	    max_count = 6;
 | |
| 	    min_count = 3;
 | |
| 	} else {
 | |
| 	    max_count = 7;
 | |
| 	    min_count = 4;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
|   /* ==========================================================================
 | |
|    * Send a literal or distance tree in compressed form, using the codes in
 | |
|    * bl_tree.
 | |
|    */
 | |
| var zip_send_tree = function(tree, // the tree to be scanned
 | |
| 		   max_code) { // and its largest code of non zero frequency
 | |
|     var n;			// iterates over all tree elements
 | |
|     var prevlen = -1;		// last emitted length
 | |
|     var curlen;			// length of current code
 | |
|     var nextlen = tree[0].dl;	// length of next code
 | |
|     var count = 0;		// repeat count of the current code
 | |
|     var max_count = 7;		// max repeat count
 | |
|     var min_count = 4;		// min repeat count
 | |
| 
 | |
|     /* tree[max_code+1].dl = -1; */  /* guard already set */
 | |
|     if(nextlen == 0) {
 | |
|       max_count = 138;
 | |
|       min_count = 3;
 | |
|     }
 | |
| 
 | |
|     for(n = 0; n <= max_code; n++) {
 | |
| 	curlen = nextlen;
 | |
| 	nextlen = tree[n+1].dl;
 | |
| 	if(++count < max_count && curlen == nextlen) {
 | |
| 	    continue;
 | |
| 	} else if(count < min_count) {
 | |
| 	    do { zip_SEND_CODE(curlen, zip_bl_tree); } while(--count != 0);
 | |
| 	} else if(curlen != 0) {
 | |
| 	    if(curlen != prevlen) {
 | |
| 		zip_SEND_CODE(curlen, zip_bl_tree);
 | |
| 		count--;
 | |
| 	    }
 | |
| 	    // Assert(count >= 3 && count <= 6, " 3_6?");
 | |
| 	    zip_SEND_CODE(zip_REP_3_6, zip_bl_tree);
 | |
| 	    zip_send_bits(count - 3, 2);
 | |
| 	} else if(count <= 10) {
 | |
| 	    zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree);
 | |
| 	    zip_send_bits(count-3, 3);
 | |
| 	} else {
 | |
| 	    zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree);
 | |
| 	    zip_send_bits(count-11, 7);
 | |
| 	}
 | |
| 	count = 0;
 | |
| 	prevlen = curlen;
 | |
| 	if(nextlen == 0) {
 | |
| 	    max_count = 138;
 | |
| 	    min_count = 3;
 | |
| 	} else if(curlen == nextlen) {
 | |
| 	    max_count = 6;
 | |
| 	    min_count = 3;
 | |
| 	} else {
 | |
| 	    max_count = 7;
 | |
| 	    min_count = 4;
 | |
| 	}
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Construct the Huffman tree for the bit lengths and return the index in
 | |
|  * bl_order of the last bit length code to send.
 | |
|  */
 | |
| var zip_build_bl_tree = function() {
 | |
|     var max_blindex;  // index of last bit length code of non zero freq
 | |
| 
 | |
|     // Determine the bit length frequencies for literal and distance trees
 | |
|     zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code);
 | |
|     zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code);
 | |
| 
 | |
|     // Build the bit length tree:
 | |
|     zip_build_tree(zip_bl_desc);
 | |
|     /* opt_len now includes the length of the tree representations, except
 | |
|      * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | |
|      */
 | |
| 
 | |
|     /* Determine the number of bit length codes to send. The pkzip format
 | |
|      * requires that at least 4 bit length codes be sent. (appnote.txt says
 | |
|      * 3 but the actual value used is 4.)
 | |
|      */
 | |
|     for(max_blindex = zip_BL_CODES-1; max_blindex >= 3; max_blindex--) {
 | |
| 	if(zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break;
 | |
|     }
 | |
|     /* Update opt_len to include the bit length tree and counts */
 | |
|     zip_opt_len += 3*(max_blindex+1) + 5+5+4;
 | |
| //    Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
 | |
| //	    encoder->opt_len, encoder->static_len));
 | |
| 
 | |
|     return max_blindex;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Send the header for a block using dynamic Huffman trees: the counts, the
 | |
|  * lengths of the bit length codes, the literal tree and the distance tree.
 | |
|  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | |
|  */
 | |
| var zip_send_all_trees = function(lcodes, dcodes, blcodes) { // number of codes for each tree
 | |
|     var rank; // index in bl_order
 | |
| 
 | |
| //    Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
 | |
| //    Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
 | |
| //	    "too many codes");
 | |
| //    Tracev((stderr, "\nbl counts: "));
 | |
|     zip_send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
 | |
|     zip_send_bits(dcodes-1,   5);
 | |
|     zip_send_bits(blcodes-4,  4); // not -3 as stated in appnote.txt
 | |
|     for(rank = 0; rank < blcodes; rank++) {
 | |
| //      Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
 | |
| 	zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3);
 | |
|     }
 | |
| 
 | |
|     // send the literal tree
 | |
|     zip_send_tree(zip_dyn_ltree,lcodes-1);
 | |
| 
 | |
|     // send the distance tree
 | |
|     zip_send_tree(zip_dyn_dtree,dcodes-1);
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Determine the best encoding for the current block: dynamic trees, static
 | |
|  * trees or store, and output the encoded block to the zip file.
 | |
|  */
 | |
| var zip_flush_block = function(eof) { // true if this is the last block for a file
 | |
|     var opt_lenb, static_lenb; // opt_len and static_len in bytes
 | |
|     var max_blindex;	// index of last bit length code of non zero freq
 | |
|     var stored_len;	// length of input block
 | |
| 
 | |
|     stored_len = zip_strstart - zip_block_start;
 | |
|     zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items
 | |
| 
 | |
|     // Construct the literal and distance trees
 | |
|     zip_build_tree(zip_l_desc);
 | |
| //    Tracev((stderr, "\nlit data: dyn %ld, stat %ld",
 | |
| //	    encoder->opt_len, encoder->static_len));
 | |
| 
 | |
|     zip_build_tree(zip_d_desc);
 | |
| //    Tracev((stderr, "\ndist data: dyn %ld, stat %ld",
 | |
| //	    encoder->opt_len, encoder->static_len));
 | |
|     /* At this point, opt_len and static_len are the total bit lengths of
 | |
|      * the compressed block data, excluding the tree representations.
 | |
|      */
 | |
| 
 | |
|     /* Build the bit length tree for the above two trees, and get the index
 | |
|      * in bl_order of the last bit length code to send.
 | |
|      */
 | |
|     max_blindex = zip_build_bl_tree();
 | |
| 
 | |
|     // Determine the best encoding. Compute first the block length in bytes
 | |
|     opt_lenb	= (zip_opt_len   +3+7)>>3;
 | |
|     static_lenb = (zip_static_len+3+7)>>3;
 | |
| 
 | |
| //    Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
 | |
| //	   opt_lenb, encoder->opt_len,
 | |
| //	   static_lenb, encoder->static_len, stored_len,
 | |
| //	   encoder->last_lit, encoder->last_dist));
 | |
| 
 | |
|     if(static_lenb <= opt_lenb)
 | |
| 	opt_lenb = static_lenb;
 | |
|     if(stored_len + 4 <= opt_lenb // 4: two words for the lengths
 | |
|        && zip_block_start >= 0) {
 | |
| 	var i;
 | |
| 
 | |
| 	/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | |
| 	 * Otherwise we can't have processed more than WSIZE input bytes since
 | |
| 	 * the last block flush, because compression would have been
 | |
| 	 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | |
| 	 * transform a block into a stored block.
 | |
| 	 */
 | |
| 	zip_send_bits((zip_STORED_BLOCK<<1)+eof, 3);  /* send block type */
 | |
| 	zip_bi_windup();		 /* align on byte boundary */
 | |
| 	zip_put_short(stored_len);
 | |
| 	zip_put_short(~stored_len);
 | |
| 
 | |
|       // copy block
 | |
| /*
 | |
|       p = &window[block_start];
 | |
|       for(i = 0; i < stored_len; i++)
 | |
| 	put_byte(p[i]);
 | |
| */
 | |
| 	for(i = 0; i < stored_len; i++)
 | |
| 	    zip_put_byte(zip_window[zip_block_start + i]);
 | |
| 
 | |
|     } else if(static_lenb == opt_lenb) {
 | |
| 	zip_send_bits((zip_STATIC_TREES<<1)+eof, 3);
 | |
| 	zip_compress_block(zip_static_ltree, zip_static_dtree);
 | |
|     } else {
 | |
| 	zip_send_bits((zip_DYN_TREES<<1)+eof, 3);
 | |
| 	zip_send_all_trees(zip_l_desc.max_code+1,
 | |
| 			   zip_d_desc.max_code+1,
 | |
| 			   max_blindex+1);
 | |
| 	zip_compress_block(zip_dyn_ltree, zip_dyn_dtree);
 | |
|     }
 | |
| 
 | |
|     zip_init_block();
 | |
| 
 | |
|     if(eof != 0)
 | |
| 	zip_bi_windup();
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Save the match info and tally the frequency counts. Return true if
 | |
|  * the current block must be flushed.
 | |
|  */
 | |
| var zip_ct_tally = function(
 | |
| 	dist, // distance of matched string
 | |
| 	lc) { // match length-MIN_MATCH or unmatched char (if dist==0)
 | |
|     zip_l_buf[zip_last_lit++] = lc;
 | |
|     if(dist == 0) {
 | |
| 	// lc is the unmatched char
 | |
| 	zip_dyn_ltree[lc].fc++;
 | |
|     } else {
 | |
| 	// Here, lc is the match length - MIN_MATCH
 | |
| 	dist--;		    // dist = match distance - 1
 | |
| //      Assert((ush)dist < (ush)MAX_DIST &&
 | |
| //	     (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
 | |
| //	     (ush)D_CODE(dist) < (ush)D_CODES,  "ct_tally: bad match");
 | |
| 
 | |
| 	zip_dyn_ltree[zip_length_code[lc]+zip_LITERALS+1].fc++;
 | |
| 	zip_dyn_dtree[zip_D_CODE(dist)].fc++;
 | |
| 
 | |
| 	zip_d_buf[zip_last_dist++] = dist;
 | |
| 	zip_flags |= zip_flag_bit;
 | |
|     }
 | |
|     zip_flag_bit <<= 1;
 | |
| 
 | |
|     // Output the flags if they fill a byte
 | |
|     if((zip_last_lit & 7) == 0) {
 | |
| 	zip_flag_buf[zip_last_flags++] = zip_flags;
 | |
| 	zip_flags = 0;
 | |
| 	zip_flag_bit = 1;
 | |
|     }
 | |
|     // Try to guess if it is profitable to stop the current block here
 | |
|     if(zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) {
 | |
| 	// Compute an upper bound for the compressed length
 | |
| 	var out_length = zip_last_lit * 8;
 | |
| 	var in_length = zip_strstart - zip_block_start;
 | |
| 	var dcode;
 | |
| 
 | |
| 	for(dcode = 0; dcode < zip_D_CODES; dcode++) {
 | |
| 	    out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]);
 | |
| 	}
 | |
| 	out_length >>= 3;
 | |
| //      Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
 | |
| //	     encoder->last_lit, encoder->last_dist, in_length, out_length,
 | |
| //	     100L - out_length*100L/in_length));
 | |
| 	if(zip_last_dist < parseInt(zip_last_lit/2) &&
 | |
| 	   out_length < parseInt(in_length/2))
 | |
| 	    return true;
 | |
|     }
 | |
|     return (zip_last_lit == zip_LIT_BUFSIZE-1 ||
 | |
| 	    zip_last_dist == zip_DIST_BUFSIZE);
 | |
|     /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
 | |
|      * on 16 bit machines and because stored blocks are restricted to
 | |
|      * 64K-1 bytes.
 | |
|      */
 | |
| }
 | |
| 
 | |
|   /* ==========================================================================
 | |
|    * Send the block data compressed using the given Huffman trees
 | |
|    */
 | |
| var zip_compress_block = function(
 | |
| 	ltree,	// literal tree
 | |
| 	dtree) {	// distance tree
 | |
|     var dist;		// distance of matched string
 | |
|     var lc;		// match length or unmatched char (if dist == 0)
 | |
|     var lx = 0;		// running index in l_buf
 | |
|     var dx = 0;		// running index in d_buf
 | |
|     var fx = 0;		// running index in flag_buf
 | |
|     var flag = 0;	// current flags
 | |
|     var code;		// the code to send
 | |
|     var extra;		// number of extra bits to send
 | |
| 
 | |
|     if(zip_last_lit != 0) do {
 | |
| 	if((lx & 7) == 0)
 | |
| 	    flag = zip_flag_buf[fx++];
 | |
| 	lc = zip_l_buf[lx++] & 0xff;
 | |
| 	if((flag & 1) == 0) {
 | |
| 	    zip_SEND_CODE(lc, ltree); /* send a literal byte */
 | |
| //	Tracecv(isgraph(lc), (stderr," '%c' ", lc));
 | |
| 	} else {
 | |
| 	    // Here, lc is the match length - MIN_MATCH
 | |
| 	    code = zip_length_code[lc];
 | |
| 	    zip_SEND_CODE(code+zip_LITERALS+1, ltree); // send the length code
 | |
| 	    extra = zip_extra_lbits[code];
 | |
| 	    if(extra != 0) {
 | |
| 		lc -= zip_base_length[code];
 | |
| 		zip_send_bits(lc, extra); // send the extra length bits
 | |
| 	    }
 | |
| 	    dist = zip_d_buf[dx++];
 | |
| 	    // Here, dist is the match distance - 1
 | |
| 	    code = zip_D_CODE(dist);
 | |
| //	Assert (code < D_CODES, "bad d_code");
 | |
| 
 | |
| 	    zip_SEND_CODE(code, dtree);	  // send the distance code
 | |
| 	    extra = zip_extra_dbits[code];
 | |
| 	    if(extra != 0) {
 | |
| 		dist -= zip_base_dist[code];
 | |
| 		zip_send_bits(dist, extra);   // send the extra distance bits
 | |
| 	    }
 | |
| 	} // literal or match pair ?
 | |
| 	flag >>= 1;
 | |
|     } while(lx < zip_last_lit);
 | |
| 
 | |
|     zip_SEND_CODE(zip_END_BLOCK, ltree);
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Send a value on a given number of bits.
 | |
|  * IN assertion: length <= 16 and value fits in length bits.
 | |
|  */
 | |
| var zip_Buf_size = 16; // bit size of bi_buf
 | |
| var zip_send_bits = function(
 | |
| 	value,	// value to send
 | |
| 	length) {	// number of bits
 | |
|     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
 | |
|      * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
 | |
|      * unused bits in value.
 | |
|      */
 | |
|     if(zip_bi_valid > zip_Buf_size - length) {
 | |
| 	zip_bi_buf |= (value << zip_bi_valid);
 | |
| 	zip_put_short(zip_bi_buf);
 | |
| 	zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid));
 | |
| 	zip_bi_valid += length - zip_Buf_size;
 | |
|     } else {
 | |
| 	zip_bi_buf |= value << zip_bi_valid;
 | |
| 	zip_bi_valid += length;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Reverse the first len bits of a code, using straightforward code (a faster
 | |
|  * method would use a table)
 | |
|  * IN assertion: 1 <= len <= 15
 | |
|  */
 | |
| var zip_bi_reverse = function(
 | |
| 	code,	// the value to invert
 | |
| 	len) {	// its bit length
 | |
|     var res = 0;
 | |
|     do {
 | |
| 	res |= code & 1;
 | |
| 	code >>= 1;
 | |
| 	res <<= 1;
 | |
|     } while(--len > 0);
 | |
|     return res >> 1;
 | |
| }
 | |
| 
 | |
| /* ==========================================================================
 | |
|  * Write out any remaining bits in an incomplete byte.
 | |
|  */
 | |
| var zip_bi_windup = function() {
 | |
|     if(zip_bi_valid > 8) {
 | |
| 	zip_put_short(zip_bi_buf);
 | |
|     } else if(zip_bi_valid > 0) {
 | |
| 	zip_put_byte(zip_bi_buf);
 | |
|     }
 | |
|     zip_bi_buf = 0;
 | |
|     zip_bi_valid = 0;
 | |
| }
 | |
| 
 | |
| var zip_qoutbuf = function() {
 | |
|     if(zip_outcnt != 0) {
 | |
| 	var q, i;
 | |
| 	q = zip_new_queue();
 | |
| 	if(zip_qhead == null)
 | |
| 	    zip_qhead = zip_qtail = q;
 | |
| 	else
 | |
| 	    zip_qtail = zip_qtail.next = q;
 | |
| 	q.len = zip_outcnt - zip_outoff;
 | |
| //      System.arraycopy(zip_outbuf, zip_outoff, q.ptr, 0, q.len);
 | |
| 	for(i = 0; i < q.len; i++)
 | |
| 	    q.ptr[i] = zip_outbuf[zip_outoff + i];
 | |
| 	zip_outcnt = zip_outoff = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| var zip_deflate = function(str, level) {
 | |
|     var i, j;
 | |
| 
 | |
|     zip_deflate_data = str;
 | |
|     zip_deflate_pos = 0;
 | |
|     if(typeof level == "undefined")
 | |
| 	level = zip_DEFAULT_LEVEL;
 | |
|     zip_deflate_start(level);
 | |
| 
 | |
|     var buff = new Array(1024);
 | |
|     var aout = [];
 | |
|     while((i = zip_deflate_internal(buff, 0, buff.length)) > 0) {
 | |
| 	var cbuf = new Array(i);
 | |
| 	for(j = 0; j < i; j++){
 | |
| 	    cbuf[j] = String.fromCharCode(buff[j]);
 | |
| 	}
 | |
| 	aout[aout.length] = cbuf.join("");
 | |
|     }
 | |
|     zip_deflate_data = null; // G.C.
 | |
|     return aout.join("");
 | |
| }
 | |
| 
 | |
| //
 | |
| // end of the script of Masanao Izumo.
 | |
| //
 | |
| 
 | |
| // we add the compression method for JSZip
 | |
| if(!JSZip.compressions["DEFLATE"]) {
 | |
|   JSZip.compressions["DEFLATE"] = {
 | |
|     magic : "\x08\x00",
 | |
|     compress : zip_deflate
 | |
|   }
 | |
| } else {
 | |
|   JSZip.compressions["DEFLATE"].compress = zip_deflate;
 | |
| }
 | |
| 
 | |
| })();
 | |
| 
 | |
| // enforcing Stuk's coding style
 | |
| // vim: set shiftwidth=3 softtabstop=3:
 |