mirror of
				https://github.com/flynx/PortableMag.git
				synced 2025-11-04 05:50:19 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			781 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			781 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			JavaScript
		
	
	
		
			Executable File
		
	
	
	
	
/*
 | 
						|
 * Port of a script by Masanao Izumo.
 | 
						|
 *
 | 
						|
 * Only changes : wrap all the variables in a function and add the 
 | 
						|
 * main function to JSZip (DEFLATE compression method).
 | 
						|
 * Everything else was written by M. Izumo.
 | 
						|
 *
 | 
						|
 * Original code can be found here: http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
 | 
						|
 */
 | 
						|
 | 
						|
if(!JSZip) {
 | 
						|
   throw "JSZip not defined";
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Original:
 | 
						|
 *   http://www.onicos.com/staff/iz/amuse/javascript/expert/inflate.txt
 | 
						|
 */
 | 
						|
 | 
						|
(function(){
 | 
						|
  // the original implementation leaks a global variable.
 | 
						|
  // Defining the variable here doesn't break anything.
 | 
						|
  var zip_fixed_bd;
 | 
						|
 | 
						|
/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
 | 
						|
 * Version: 1.0.0.1
 | 
						|
 * LastModified: Dec 25 1999
 | 
						|
 */
 | 
						|
 | 
						|
/* Interface:
 | 
						|
 * data = zip_inflate(src);
 | 
						|
 */
 | 
						|
 | 
						|
/* constant parameters */
 | 
						|
var zip_WSIZE = 32768;		// Sliding Window size
 | 
						|
var zip_STORED_BLOCK = 0;
 | 
						|
var zip_STATIC_TREES = 1;
 | 
						|
var zip_DYN_TREES    = 2;
 | 
						|
 | 
						|
/* for inflate */
 | 
						|
var zip_lbits = 9; 		// bits in base literal/length lookup table
 | 
						|
var zip_dbits = 6; 		// bits in base distance lookup table
 | 
						|
var zip_INBUFSIZ = 32768;	// Input buffer size
 | 
						|
var zip_INBUF_EXTRA = 64;	// Extra buffer
 | 
						|
 | 
						|
/* variables (inflate) */
 | 
						|
var zip_slide;
 | 
						|
var zip_wp;			// current position in slide
 | 
						|
var zip_fixed_tl = null;	// inflate static
 | 
						|
var zip_fixed_td;		// inflate static
 | 
						|
var zip_fixed_bl, fixed_bd;	// inflate static
 | 
						|
var zip_bit_buf;		// bit buffer
 | 
						|
var zip_bit_len;		// bits in bit buffer
 | 
						|
var zip_method;
 | 
						|
var zip_eof;
 | 
						|
var zip_copy_leng;
 | 
						|
var zip_copy_dist;
 | 
						|
var zip_tl, zip_td;	// literal/length and distance decoder tables
 | 
						|
var zip_bl, zip_bd;	// number of bits decoded by tl and td
 | 
						|
 | 
						|
var zip_inflate_data;
 | 
						|
var zip_inflate_pos;
 | 
						|
 | 
						|
 | 
						|
/* constant tables (inflate) */
 | 
						|
var zip_MASK_BITS = new Array(
 | 
						|
    0x0000,
 | 
						|
    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
 | 
						|
    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff);
 | 
						|
// Tables for deflate from PKZIP's appnote.txt.
 | 
						|
var zip_cplens = new Array( // Copy lengths for literal codes 257..285
 | 
						|
    3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
 | 
						|
    35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0);
 | 
						|
/* note: see note #13 above about the 258 in this list. */
 | 
						|
var zip_cplext = new Array( // Extra bits for literal codes 257..285
 | 
						|
    0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
 | 
						|
    3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99); // 99==invalid
 | 
						|
var zip_cpdist = new Array( // Copy offsets for distance codes 0..29
 | 
						|
    1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
 | 
						|
    257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
 | 
						|
    8193, 12289, 16385, 24577);
 | 
						|
var zip_cpdext = new Array( // Extra bits for distance codes
 | 
						|
    0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
 | 
						|
    7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
 | 
						|
    12, 12, 13, 13);
 | 
						|
var zip_border = new Array(  // Order of the bit length code lengths
 | 
						|
    16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15);
 | 
						|
/* objects (inflate) */
 | 
						|
 | 
						|
function zip_HuftList() {
 | 
						|
    this.next = null;
 | 
						|
    this.list = null;
 | 
						|
}
 | 
						|
 | 
						|
function zip_HuftNode() {
 | 
						|
    this.e = 0; // number of extra bits or operation
 | 
						|
    this.b = 0; // number of bits in this code or subcode
 | 
						|
 | 
						|
    // union
 | 
						|
    this.n = 0; // literal, length base, or distance base
 | 
						|
    this.t = null; // (zip_HuftNode) pointer to next level of table
 | 
						|
}
 | 
						|
 | 
						|
function zip_HuftBuild(b,	// code lengths in bits (all assumed <= BMAX)
 | 
						|
		       n,	// number of codes (assumed <= N_MAX)
 | 
						|
		       s,	// number of simple-valued codes (0..s-1)
 | 
						|
		       d,	// list of base values for non-simple codes
 | 
						|
		       e,	// list of extra bits for non-simple codes
 | 
						|
		       mm	// maximum lookup bits
 | 
						|
		   ) {
 | 
						|
    this.BMAX = 16;   // maximum bit length of any code
 | 
						|
    this.N_MAX = 288; // maximum number of codes in any set
 | 
						|
    this.status = 0;	// 0: success, 1: incomplete table, 2: bad input
 | 
						|
    this.root = null;	// (zip_HuftList) starting table
 | 
						|
    this.m = 0;		// maximum lookup bits, returns actual
 | 
						|
 | 
						|
/* Given a list of code lengths and a maximum table size, make a set of
 | 
						|
   tables to decode that set of codes.	Return zero on success, one if
 | 
						|
   the given code set is incomplete (the tables are still built in this
 | 
						|
   case), two if the input is invalid (all zero length codes or an
 | 
						|
   oversubscribed set of lengths), and three if not enough memory.
 | 
						|
   The code with value 256 is special, and the tables are constructed
 | 
						|
   so that no bits beyond that code are fetched when that code is
 | 
						|
   decoded. */
 | 
						|
    {
 | 
						|
	var a;			// counter for codes of length k
 | 
						|
	var c = new Array(this.BMAX+1);	// bit length count table
 | 
						|
	var el;			// length of EOB code (value 256)
 | 
						|
	var f;			// i repeats in table every f entries
 | 
						|
	var g;			// maximum code length
 | 
						|
	var h;			// table level
 | 
						|
	var i;			// counter, current code
 | 
						|
	var j;			// counter
 | 
						|
	var k;			// number of bits in current code
 | 
						|
	var lx = new Array(this.BMAX+1);	// stack of bits per table
 | 
						|
	var p;			// pointer into c[], b[], or v[]
 | 
						|
	var pidx;		// index of p
 | 
						|
	var q;			// (zip_HuftNode) points to current table
 | 
						|
	var r = new zip_HuftNode(); // table entry for structure assignment
 | 
						|
	var u = new Array(this.BMAX); // zip_HuftNode[BMAX][]  table stack
 | 
						|
	var v = new Array(this.N_MAX); // values in order of bit length
 | 
						|
	var w;
 | 
						|
	var x = new Array(this.BMAX+1);// bit offsets, then code stack
 | 
						|
	var xp;			// pointer into x or c
 | 
						|
	var y;			// number of dummy codes added
 | 
						|
	var z;			// number of entries in current table
 | 
						|
	var o;
 | 
						|
	var tail;		// (zip_HuftList)
 | 
						|
 | 
						|
	tail = this.root = null;
 | 
						|
	for(i = 0; i < c.length; i++)
 | 
						|
	    c[i] = 0;
 | 
						|
	for(i = 0; i < lx.length; i++)
 | 
						|
	    lx[i] = 0;
 | 
						|
	for(i = 0; i < u.length; i++)
 | 
						|
	    u[i] = null;
 | 
						|
	for(i = 0; i < v.length; i++)
 | 
						|
	    v[i] = 0;
 | 
						|
	for(i = 0; i < x.length; i++)
 | 
						|
	    x[i] = 0;
 | 
						|
 | 
						|
	// Generate counts for each bit length
 | 
						|
	el = n > 256 ? b[256] : this.BMAX; // set length of EOB code, if any
 | 
						|
	p = b; pidx = 0;
 | 
						|
	i = n;
 | 
						|
	do {
 | 
						|
	    c[p[pidx]]++;	// assume all entries <= BMAX
 | 
						|
	    pidx++;
 | 
						|
	} while(--i > 0);
 | 
						|
	if(c[0] == n) {	// null input--all zero length codes
 | 
						|
	    this.root = null;
 | 
						|
	    this.m = 0;
 | 
						|
	    this.status = 0;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
 | 
						|
	// Find minimum and maximum length, bound *m by those
 | 
						|
	for(j = 1; j <= this.BMAX; j++)
 | 
						|
	    if(c[j] != 0)
 | 
						|
		break;
 | 
						|
	k = j;			// minimum code length
 | 
						|
	if(mm < j)
 | 
						|
	    mm = j;
 | 
						|
	for(i = this.BMAX; i != 0; i--)
 | 
						|
	    if(c[i] != 0)
 | 
						|
		break;
 | 
						|
	g = i;			// maximum code length
 | 
						|
	if(mm > i)
 | 
						|
	    mm = i;
 | 
						|
 | 
						|
	// Adjust last length count to fill out codes, if needed
 | 
						|
	for(y = 1 << j; j < i; j++, y <<= 1)
 | 
						|
	    if((y -= c[j]) < 0) {
 | 
						|
		this.status = 2;	// bad input: more codes than bits
 | 
						|
		this.m = mm;
 | 
						|
		return;
 | 
						|
	    }
 | 
						|
	if((y -= c[i]) < 0) {
 | 
						|
	    this.status = 2;
 | 
						|
	    this.m = mm;
 | 
						|
	    return;
 | 
						|
	}
 | 
						|
	c[i] += y;
 | 
						|
 | 
						|
	// Generate starting offsets into the value table for each length
 | 
						|
	x[1] = j = 0;
 | 
						|
	p = c;
 | 
						|
	pidx = 1;
 | 
						|
	xp = 2;
 | 
						|
	while(--i > 0)		// note that i == g from above
 | 
						|
	    x[xp++] = (j += p[pidx++]);
 | 
						|
 | 
						|
	// Make a table of values in order of bit lengths
 | 
						|
	p = b; pidx = 0;
 | 
						|
	i = 0;
 | 
						|
	do {
 | 
						|
	    if((j = p[pidx++]) != 0)
 | 
						|
		v[x[j]++] = i;
 | 
						|
	} while(++i < n);
 | 
						|
	n = x[g];			// set n to length of v
 | 
						|
 | 
						|
	// Generate the Huffman codes and for each, make the table entries
 | 
						|
	x[0] = i = 0;		// first Huffman code is zero
 | 
						|
	p = v; pidx = 0;		// grab values in bit order
 | 
						|
	h = -1;			// no tables yet--level -1
 | 
						|
	w = lx[0] = 0;		// no bits decoded yet
 | 
						|
	q = null;			// ditto
 | 
						|
	z = 0;			// ditto
 | 
						|
 | 
						|
	// go through the bit lengths (k already is bits in shortest code)
 | 
						|
	for(; k <= g; k++) {
 | 
						|
	    a = c[k];
 | 
						|
	    while(a-- > 0) {
 | 
						|
		// here i is the Huffman code of length k bits for value p[pidx]
 | 
						|
		// make tables up to required level
 | 
						|
		while(k > w + lx[1 + h]) {
 | 
						|
		    w += lx[1 + h]; // add bits already decoded
 | 
						|
		    h++;
 | 
						|
 | 
						|
		    // compute minimum size table less than or equal to *m bits
 | 
						|
		    z = (z = g - w) > mm ? mm : z; // upper limit
 | 
						|
		    if((f = 1 << (j = k - w)) > a + 1) { // try a k-w bit table
 | 
						|
			// too few codes for k-w bit table
 | 
						|
			f -= a + 1;	// deduct codes from patterns left
 | 
						|
			xp = k;
 | 
						|
			while(++j < z) { // try smaller tables up to z bits
 | 
						|
			    if((f <<= 1) <= c[++xp])
 | 
						|
				break;	// enough codes to use up j bits
 | 
						|
			    f -= c[xp];	// else deduct codes from patterns
 | 
						|
			}
 | 
						|
		    }
 | 
						|
		    if(w + j > el && w < el)
 | 
						|
			j = el - w;	// make EOB code end at table
 | 
						|
		    z = 1 << j;	// table entries for j-bit table
 | 
						|
		    lx[1 + h] = j; // set table size in stack
 | 
						|
 | 
						|
		    // allocate and link in new table
 | 
						|
		    q = new Array(z);
 | 
						|
		    for(o = 0; o < z; o++) {
 | 
						|
			q[o] = new zip_HuftNode();
 | 
						|
		    }
 | 
						|
 | 
						|
		    if(tail == null)
 | 
						|
			tail = this.root = new zip_HuftList();
 | 
						|
		    else
 | 
						|
			tail = tail.next = new zip_HuftList();
 | 
						|
		    tail.next = null;
 | 
						|
		    tail.list = q;
 | 
						|
		    u[h] = q;	// table starts after link
 | 
						|
 | 
						|
		    /* connect to last table, if there is one */
 | 
						|
		    if(h > 0) {
 | 
						|
			x[h] = i;		// save pattern for backing up
 | 
						|
			r.b = lx[h];	// bits to dump before this table
 | 
						|
			r.e = 16 + j;	// bits in this table
 | 
						|
			r.t = q;		// pointer to this table
 | 
						|
			j = (i & ((1 << w) - 1)) >> (w - lx[h]);
 | 
						|
			u[h-1][j].e = r.e;
 | 
						|
			u[h-1][j].b = r.b;
 | 
						|
			u[h-1][j].n = r.n;
 | 
						|
			u[h-1][j].t = r.t;
 | 
						|
		    }
 | 
						|
		}
 | 
						|
 | 
						|
		// set up table entry in r
 | 
						|
		r.b = k - w;
 | 
						|
		if(pidx >= n)
 | 
						|
		    r.e = 99;		// out of values--invalid code
 | 
						|
		else if(p[pidx] < s) {
 | 
						|
		    r.e = (p[pidx] < 256 ? 16 : 15); // 256 is end-of-block code
 | 
						|
		    r.n = p[pidx++];	// simple code is just the value
 | 
						|
		} else {
 | 
						|
		    r.e = e[p[pidx] - s];	// non-simple--look up in lists
 | 
						|
		    r.n = d[p[pidx++] - s];
 | 
						|
		}
 | 
						|
 | 
						|
		// fill code-like entries with r //
 | 
						|
		f = 1 << (k - w);
 | 
						|
		for(j = i >> w; j < z; j += f) {
 | 
						|
		    q[j].e = r.e;
 | 
						|
		    q[j].b = r.b;
 | 
						|
		    q[j].n = r.n;
 | 
						|
		    q[j].t = r.t;
 | 
						|
		}
 | 
						|
 | 
						|
		// backwards increment the k-bit code i
 | 
						|
		for(j = 1 << (k - 1); (i & j) != 0; j >>= 1)
 | 
						|
		    i ^= j;
 | 
						|
		i ^= j;
 | 
						|
 | 
						|
		// backup over finished tables
 | 
						|
		while((i & ((1 << w) - 1)) != x[h]) {
 | 
						|
		    w -= lx[h];		// don't need to update q
 | 
						|
		    h--;
 | 
						|
		}
 | 
						|
	    }
 | 
						|
	}
 | 
						|
 | 
						|
	/* return actual size of base table */
 | 
						|
	this.m = lx[1];
 | 
						|
 | 
						|
	/* Return true (1) if we were given an incomplete table */
 | 
						|
	this.status = ((y != 0 && g != 1) ? 1 : 0);
 | 
						|
    } /* end of constructor */
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* routines (inflate) */
 | 
						|
 | 
						|
function zip_GET_BYTE() {
 | 
						|
    if(zip_inflate_data.length == zip_inflate_pos)
 | 
						|
	return -1;
 | 
						|
    return zip_inflate_data.charCodeAt(zip_inflate_pos++) & 0xff;
 | 
						|
}
 | 
						|
 | 
						|
function zip_NEEDBITS(n) {
 | 
						|
    while(zip_bit_len < n) {
 | 
						|
	zip_bit_buf |= zip_GET_BYTE() << zip_bit_len;
 | 
						|
	zip_bit_len += 8;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
function zip_GETBITS(n) {
 | 
						|
    return zip_bit_buf & zip_MASK_BITS[n];
 | 
						|
}
 | 
						|
 | 
						|
function zip_DUMPBITS(n) {
 | 
						|
    zip_bit_buf >>= n;
 | 
						|
    zip_bit_len -= n;
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_codes(buff, off, size) {
 | 
						|
    /* inflate (decompress) the codes in a deflated (compressed) block.
 | 
						|
       Return an error code or zero if it all goes ok. */
 | 
						|
    var e;		// table entry flag/number of extra bits
 | 
						|
    var t;		// (zip_HuftNode) pointer to table entry
 | 
						|
    var n;
 | 
						|
 | 
						|
    if(size == 0)
 | 
						|
      return 0;
 | 
						|
 | 
						|
    // inflate the coded data
 | 
						|
    n = 0;
 | 
						|
    for(;;) {			// do until end of block
 | 
						|
	zip_NEEDBITS(zip_bl);
 | 
						|
	t = zip_tl.list[zip_GETBITS(zip_bl)];
 | 
						|
	e = t.e;
 | 
						|
	while(e > 16) {
 | 
						|
	    if(e == 99)
 | 
						|
		return -1;
 | 
						|
	    zip_DUMPBITS(t.b);
 | 
						|
	    e -= 16;
 | 
						|
	    zip_NEEDBITS(e);
 | 
						|
	    t = t.t[zip_GETBITS(e)];
 | 
						|
	    e = t.e;
 | 
						|
	}
 | 
						|
	zip_DUMPBITS(t.b);
 | 
						|
 | 
						|
	if(e == 16) {		// then it's a literal
 | 
						|
	    zip_wp &= zip_WSIZE - 1;
 | 
						|
	    buff[off + n++] = zip_slide[zip_wp++] = t.n;
 | 
						|
	    if(n == size)
 | 
						|
		return size;
 | 
						|
	    continue;
 | 
						|
	}
 | 
						|
 | 
						|
	// exit if end of block
 | 
						|
	if(e == 15)
 | 
						|
	    break;
 | 
						|
 | 
						|
	// it's an EOB or a length
 | 
						|
 | 
						|
	// get length of block to copy
 | 
						|
	zip_NEEDBITS(e);
 | 
						|
	zip_copy_leng = t.n + zip_GETBITS(e);
 | 
						|
	zip_DUMPBITS(e);
 | 
						|
 | 
						|
	// decode distance of block to copy
 | 
						|
	zip_NEEDBITS(zip_bd);
 | 
						|
	t = zip_td.list[zip_GETBITS(zip_bd)];
 | 
						|
	e = t.e;
 | 
						|
 | 
						|
	while(e > 16) {
 | 
						|
	    if(e == 99)
 | 
						|
		return -1;
 | 
						|
	    zip_DUMPBITS(t.b);
 | 
						|
	    e -= 16;
 | 
						|
	    zip_NEEDBITS(e);
 | 
						|
	    t = t.t[zip_GETBITS(e)];
 | 
						|
	    e = t.e;
 | 
						|
	}
 | 
						|
	zip_DUMPBITS(t.b);
 | 
						|
	zip_NEEDBITS(e);
 | 
						|
	zip_copy_dist = zip_wp - t.n - zip_GETBITS(e);
 | 
						|
	zip_DUMPBITS(e);
 | 
						|
 | 
						|
	// do the copy
 | 
						|
	while(zip_copy_leng > 0 && n < size) {
 | 
						|
	    zip_copy_leng--;
 | 
						|
	    zip_copy_dist &= zip_WSIZE - 1;
 | 
						|
	    zip_wp &= zip_WSIZE - 1;
 | 
						|
	    buff[off + n++] = zip_slide[zip_wp++]
 | 
						|
		= zip_slide[zip_copy_dist++];
 | 
						|
	}
 | 
						|
 | 
						|
	if(n == size)
 | 
						|
	    return size;
 | 
						|
    }
 | 
						|
 | 
						|
    zip_method = -1; // done
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_stored(buff, off, size) {
 | 
						|
    /* "decompress" an inflated type 0 (stored) block. */
 | 
						|
    var n;
 | 
						|
 | 
						|
    // go to byte boundary
 | 
						|
    n = zip_bit_len & 7;
 | 
						|
    zip_DUMPBITS(n);
 | 
						|
 | 
						|
    // get the length and its complement
 | 
						|
    zip_NEEDBITS(16);
 | 
						|
    n = zip_GETBITS(16);
 | 
						|
    zip_DUMPBITS(16);
 | 
						|
    zip_NEEDBITS(16);
 | 
						|
    if(n != ((~zip_bit_buf) & 0xffff))
 | 
						|
	return -1;			// error in compressed data
 | 
						|
    zip_DUMPBITS(16);
 | 
						|
 | 
						|
    // read and output the compressed data
 | 
						|
    zip_copy_leng = n;
 | 
						|
 | 
						|
    n = 0;
 | 
						|
    while(zip_copy_leng > 0 && n < size) {
 | 
						|
	zip_copy_leng--;
 | 
						|
	zip_wp &= zip_WSIZE - 1;
 | 
						|
	zip_NEEDBITS(8);
 | 
						|
	buff[off + n++] = zip_slide[zip_wp++] =
 | 
						|
	    zip_GETBITS(8);
 | 
						|
	zip_DUMPBITS(8);
 | 
						|
    }
 | 
						|
 | 
						|
    if(zip_copy_leng == 0)
 | 
						|
      zip_method = -1; // done
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_fixed(buff, off, size) {
 | 
						|
    /* decompress an inflated type 1 (fixed Huffman codes) block.  We should
 | 
						|
       either replace this with a custom decoder, or at least precompute the
 | 
						|
       Huffman tables. */
 | 
						|
 | 
						|
    // if first time, set up tables for fixed blocks
 | 
						|
    if(zip_fixed_tl == null) {
 | 
						|
	var i;			// temporary variable
 | 
						|
	var l = new Array(288);	// length list for huft_build
 | 
						|
	var h;	// zip_HuftBuild
 | 
						|
 | 
						|
	// literal table
 | 
						|
	for(i = 0; i < 144; i++)
 | 
						|
	    l[i] = 8;
 | 
						|
	for(; i < 256; i++)
 | 
						|
	    l[i] = 9;
 | 
						|
	for(; i < 280; i++)
 | 
						|
	    l[i] = 7;
 | 
						|
	for(; i < 288; i++)	// make a complete, but wrong code set
 | 
						|
	    l[i] = 8;
 | 
						|
	zip_fixed_bl = 7;
 | 
						|
 | 
						|
	h = new zip_HuftBuild(l, 288, 257, zip_cplens, zip_cplext,
 | 
						|
			      zip_fixed_bl);
 | 
						|
	if(h.status != 0) {
 | 
						|
	    alert("HufBuild error: "+h.status);
 | 
						|
	    return -1;
 | 
						|
	}
 | 
						|
	zip_fixed_tl = h.root;
 | 
						|
	zip_fixed_bl = h.m;
 | 
						|
 | 
						|
	// distance table
 | 
						|
	for(i = 0; i < 30; i++)	// make an incomplete code set
 | 
						|
	    l[i] = 5;
 | 
						|
	zip_fixed_bd = 5;
 | 
						|
 | 
						|
	h = new zip_HuftBuild(l, 30, 0, zip_cpdist, zip_cpdext, zip_fixed_bd);
 | 
						|
	if(h.status > 1) {
 | 
						|
	    zip_fixed_tl = null;
 | 
						|
	    alert("HufBuild error: "+h.status);
 | 
						|
	    return -1;
 | 
						|
	}
 | 
						|
	zip_fixed_td = h.root;
 | 
						|
	zip_fixed_bd = h.m;
 | 
						|
    }
 | 
						|
 | 
						|
    zip_tl = zip_fixed_tl;
 | 
						|
    zip_td = zip_fixed_td;
 | 
						|
    zip_bl = zip_fixed_bl;
 | 
						|
    zip_bd = zip_fixed_bd;
 | 
						|
    return zip_inflate_codes(buff, off, size);
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_dynamic(buff, off, size) {
 | 
						|
    // decompress an inflated type 2 (dynamic Huffman codes) block.
 | 
						|
    var i;		// temporary variables
 | 
						|
    var j;
 | 
						|
    var l;		// last length
 | 
						|
    var n;		// number of lengths to get
 | 
						|
    var t;		// (zip_HuftNode) literal/length code table
 | 
						|
    var nb;		// number of bit length codes
 | 
						|
    var nl;		// number of literal/length codes
 | 
						|
    var nd;		// number of distance codes
 | 
						|
    var ll = new Array(286+30); // literal/length and distance code lengths
 | 
						|
    var h;		// (zip_HuftBuild)
 | 
						|
 | 
						|
    for(i = 0; i < ll.length; i++)
 | 
						|
	ll[i] = 0;
 | 
						|
 | 
						|
    // read in table lengths
 | 
						|
    zip_NEEDBITS(5);
 | 
						|
    nl = 257 + zip_GETBITS(5);	// number of literal/length codes
 | 
						|
    zip_DUMPBITS(5);
 | 
						|
    zip_NEEDBITS(5);
 | 
						|
    nd = 1 + zip_GETBITS(5);	// number of distance codes
 | 
						|
    zip_DUMPBITS(5);
 | 
						|
    zip_NEEDBITS(4);
 | 
						|
    nb = 4 + zip_GETBITS(4);	// number of bit length codes
 | 
						|
    zip_DUMPBITS(4);
 | 
						|
    if(nl > 286 || nd > 30)
 | 
						|
      return -1;		// bad lengths
 | 
						|
 | 
						|
    // read in bit-length-code lengths
 | 
						|
    for(j = 0; j < nb; j++)
 | 
						|
    {
 | 
						|
	zip_NEEDBITS(3);
 | 
						|
	ll[zip_border[j]] = zip_GETBITS(3);
 | 
						|
	zip_DUMPBITS(3);
 | 
						|
    }
 | 
						|
    for(; j < 19; j++)
 | 
						|
	ll[zip_border[j]] = 0;
 | 
						|
 | 
						|
    // build decoding table for trees--single level, 7 bit lookup
 | 
						|
    zip_bl = 7;
 | 
						|
    h = new zip_HuftBuild(ll, 19, 19, null, null, zip_bl);
 | 
						|
    if(h.status != 0)
 | 
						|
	return -1;	// incomplete code set
 | 
						|
 | 
						|
    zip_tl = h.root;
 | 
						|
    zip_bl = h.m;
 | 
						|
 | 
						|
    // read in literal and distance code lengths
 | 
						|
    n = nl + nd;
 | 
						|
    i = l = 0;
 | 
						|
    while(i < n) {
 | 
						|
	zip_NEEDBITS(zip_bl);
 | 
						|
	t = zip_tl.list[zip_GETBITS(zip_bl)];
 | 
						|
	j = t.b;
 | 
						|
	zip_DUMPBITS(j);
 | 
						|
	j = t.n;
 | 
						|
	if(j < 16)		// length of code in bits (0..15)
 | 
						|
	    ll[i++] = l = j;	// save last length in l
 | 
						|
	else if(j == 16) {	// repeat last length 3 to 6 times
 | 
						|
	    zip_NEEDBITS(2);
 | 
						|
	    j = 3 + zip_GETBITS(2);
 | 
						|
	    zip_DUMPBITS(2);
 | 
						|
	    if(i + j > n)
 | 
						|
		return -1;
 | 
						|
	    while(j-- > 0)
 | 
						|
		ll[i++] = l;
 | 
						|
	} else if(j == 17) {	// 3 to 10 zero length codes
 | 
						|
	    zip_NEEDBITS(3);
 | 
						|
	    j = 3 + zip_GETBITS(3);
 | 
						|
	    zip_DUMPBITS(3);
 | 
						|
	    if(i + j > n)
 | 
						|
		return -1;
 | 
						|
	    while(j-- > 0)
 | 
						|
		ll[i++] = 0;
 | 
						|
	    l = 0;
 | 
						|
	} else {		// j == 18: 11 to 138 zero length codes
 | 
						|
	    zip_NEEDBITS(7);
 | 
						|
	    j = 11 + zip_GETBITS(7);
 | 
						|
	    zip_DUMPBITS(7);
 | 
						|
	    if(i + j > n)
 | 
						|
		return -1;
 | 
						|
	    while(j-- > 0)
 | 
						|
		ll[i++] = 0;
 | 
						|
	    l = 0;
 | 
						|
	}
 | 
						|
    }
 | 
						|
 | 
						|
    // build the decoding tables for literal/length and distance codes
 | 
						|
    zip_bl = zip_lbits;
 | 
						|
    h = new zip_HuftBuild(ll, nl, 257, zip_cplens, zip_cplext, zip_bl);
 | 
						|
    if(zip_bl == 0)	// no literals or lengths
 | 
						|
	h.status = 1;
 | 
						|
    if(h.status != 0) {
 | 
						|
	if(h.status == 1)
 | 
						|
	    ;// **incomplete literal tree**
 | 
						|
	return -1;		// incomplete code set
 | 
						|
    }
 | 
						|
    zip_tl = h.root;
 | 
						|
    zip_bl = h.m;
 | 
						|
 | 
						|
    for(i = 0; i < nd; i++)
 | 
						|
	ll[i] = ll[i + nl];
 | 
						|
    zip_bd = zip_dbits;
 | 
						|
    h = new zip_HuftBuild(ll, nd, 0, zip_cpdist, zip_cpdext, zip_bd);
 | 
						|
    zip_td = h.root;
 | 
						|
    zip_bd = h.m;
 | 
						|
 | 
						|
    if(zip_bd == 0 && nl > 257) {   // lengths but no distances
 | 
						|
	// **incomplete distance tree**
 | 
						|
	return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if(h.status == 1) {
 | 
						|
	;// **incomplete distance tree**
 | 
						|
    }
 | 
						|
    if(h.status != 0)
 | 
						|
	return -1;
 | 
						|
 | 
						|
    // decompress until an end-of-block code
 | 
						|
    return zip_inflate_codes(buff, off, size);
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_start() {
 | 
						|
    var i;
 | 
						|
 | 
						|
    if(zip_slide == null)
 | 
						|
	zip_slide = new Array(2 * zip_WSIZE);
 | 
						|
    zip_wp = 0;
 | 
						|
    zip_bit_buf = 0;
 | 
						|
    zip_bit_len = 0;
 | 
						|
    zip_method = -1;
 | 
						|
    zip_eof = false;
 | 
						|
    zip_copy_leng = zip_copy_dist = 0;
 | 
						|
    zip_tl = null;
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate_internal(buff, off, size) {
 | 
						|
    // decompress an inflated entry
 | 
						|
    var n, i;
 | 
						|
 | 
						|
    n = 0;
 | 
						|
    while(n < size) {
 | 
						|
	if(zip_eof && zip_method == -1)
 | 
						|
	    return n;
 | 
						|
 | 
						|
	if(zip_copy_leng > 0) {
 | 
						|
	    if(zip_method != zip_STORED_BLOCK) {
 | 
						|
		// STATIC_TREES or DYN_TREES
 | 
						|
		while(zip_copy_leng > 0 && n < size) {
 | 
						|
		    zip_copy_leng--;
 | 
						|
		    zip_copy_dist &= zip_WSIZE - 1;
 | 
						|
		    zip_wp &= zip_WSIZE - 1;
 | 
						|
		    buff[off + n++] = zip_slide[zip_wp++] =
 | 
						|
			zip_slide[zip_copy_dist++];
 | 
						|
		}
 | 
						|
	    } else {
 | 
						|
		while(zip_copy_leng > 0 && n < size) {
 | 
						|
		    zip_copy_leng--;
 | 
						|
		    zip_wp &= zip_WSIZE - 1;
 | 
						|
		    zip_NEEDBITS(8);
 | 
						|
		    buff[off + n++] = zip_slide[zip_wp++] = zip_GETBITS(8);
 | 
						|
		    zip_DUMPBITS(8);
 | 
						|
		}
 | 
						|
		if(zip_copy_leng == 0)
 | 
						|
		    zip_method = -1; // done
 | 
						|
	    }
 | 
						|
	    if(n == size)
 | 
						|
		return n;
 | 
						|
	}
 | 
						|
 | 
						|
	if(zip_method == -1) {
 | 
						|
	    if(zip_eof)
 | 
						|
		break;
 | 
						|
 | 
						|
	    // read in last block bit
 | 
						|
	    zip_NEEDBITS(1);
 | 
						|
	    if(zip_GETBITS(1) != 0)
 | 
						|
		zip_eof = true;
 | 
						|
	    zip_DUMPBITS(1);
 | 
						|
 | 
						|
	    // read in block type
 | 
						|
	    zip_NEEDBITS(2);
 | 
						|
	    zip_method = zip_GETBITS(2);
 | 
						|
	    zip_DUMPBITS(2);
 | 
						|
	    zip_tl = null;
 | 
						|
	    zip_copy_leng = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	switch(zip_method) {
 | 
						|
	  case 0: // zip_STORED_BLOCK
 | 
						|
	    i = zip_inflate_stored(buff, off + n, size - n);
 | 
						|
	    break;
 | 
						|
 | 
						|
	  case 1: // zip_STATIC_TREES
 | 
						|
	    if(zip_tl != null)
 | 
						|
		i = zip_inflate_codes(buff, off + n, size - n);
 | 
						|
	    else
 | 
						|
		i = zip_inflate_fixed(buff, off + n, size - n);
 | 
						|
	    break;
 | 
						|
 | 
						|
	  case 2: // zip_DYN_TREES
 | 
						|
	    if(zip_tl != null)
 | 
						|
		i = zip_inflate_codes(buff, off + n, size - n);
 | 
						|
	    else
 | 
						|
		i = zip_inflate_dynamic(buff, off + n, size - n);
 | 
						|
	    break;
 | 
						|
 | 
						|
	  default: // error
 | 
						|
	    i = -1;
 | 
						|
	    break;
 | 
						|
	}
 | 
						|
 | 
						|
	if(i == -1) {
 | 
						|
	    if(zip_eof)
 | 
						|
		return 0;
 | 
						|
	    return -1;
 | 
						|
	}
 | 
						|
	n += i;
 | 
						|
    }
 | 
						|
    return n;
 | 
						|
}
 | 
						|
 | 
						|
function zip_inflate(str) {
 | 
						|
    var out, buff;
 | 
						|
    var i, j;
 | 
						|
 | 
						|
    zip_inflate_start();
 | 
						|
    zip_inflate_data = str;
 | 
						|
    zip_inflate_pos = 0;
 | 
						|
 | 
						|
    buff = new Array(1024);
 | 
						|
    out = "";
 | 
						|
    while((i = zip_inflate_internal(buff, 0, buff.length)) > 0) {
 | 
						|
	for(j = 0; j < i; j++)
 | 
						|
	    out += String.fromCharCode(buff[j]);
 | 
						|
    }
 | 
						|
    zip_inflate_data = null; // G.C.
 | 
						|
    return out;
 | 
						|
}
 | 
						|
 | 
						|
//
 | 
						|
// end of the script of Masanao Izumo.
 | 
						|
//
 | 
						|
 | 
						|
// we add the compression method for JSZip
 | 
						|
if(!JSZip.compressions["DEFLATE"]) {
 | 
						|
  JSZip.compressions["DEFLATE"] = {
 | 
						|
    magic : "\x08\x00",
 | 
						|
    uncompress : zip_inflate
 | 
						|
  }
 | 
						|
} else {
 | 
						|
  JSZip.compressions["DEFLATE"].uncompress = zip_inflate;
 | 
						|
}
 | 
						|
 | 
						|
})();
 | 
						|
 | 
						|
// enforcing Stuk's coding style
 | 
						|
// vim: set shiftwidth=3 softtabstop=3:
 |