# walk.js An extensible tree walk(..) framework... ## Theory and operation This module generalizes structure traverse (*walking*). This is done via a `walk(..)` function that recieves a user-defined `getter(..)` function and returns a *walker*. ### Constructing the walker and walking `walk(getter)(state, ...nodes) -> state` `walk(getter, state)(...nodes) -> state` `walk(getter, state, ...nodes) -> state` - Recieves a `getter` function a `state` and a list of `nodes`, - Iterates through `nodes` calling the `getter(..)` per node, threading the `state` through each call, - Returns the `state` when there are no more `nodes`. ### The getter `getter(state, node, next, down, stop) -> state` - Recieves `state`, `node` and three control functions: `next`, `down` and `stop`, - Called in a context (`this`), persistent within one `walk(..)` call, inherited from *walker*`.prototype` and usable to store data between `getter(..)` calls, - Can process `node` and `state`, - Can queue nodes for walking via `next(...nodes)` - Can walk nodes directly via `down(state, ...nodes) -> state` - Can abbort *walking* and return a state via `stop()` or `stop(state)` - Returns `state`, ### Putting it all together A trivial *flat* example... ```javascript walk(function(r, n){ return r+n }, 0, ...[1,2,3]) // -> 6 ``` The above is essentially equivalent to... ```javascript [1,2,3].reduce(function(r, n){ return r+n }, 0) // -> 6 ``` And for *flat* lists `.reduce(..)` and friends are simpler and more logical. `walk(..)` is designed to simplify more complex cases: - The input is not *flat*: ```javascript // sum the items in a *deep* array (depth-first)... var sum = walk(function(r, n){ return n instanceof Array ? down(r, ...n) : r + n }, 0) sum( [1, [2, 3], 4, [[5], 6]] ) // -> 21 ``` For reference here is a *recursive* `.reduce(..)` example: ```javascript function sumr(l){ return l.reduce(function(r, e){ return r + (e instanceof Array ? sumr(e) : e) }, 0) } sumr( [1, [2, 3], 4, [[5], 6]] ) // -> 21 ``` - Need to abort the recursion prematurelly: ```javascript // check if structure contains 0... var containsZero = walk(function(r, e, next, down, stop){ // NOTE: we'll only count leaf nodes... this.nodes_visited = (this.nodes_visited || 0) return e === 0 ? // target found... //...abort search, report number of nodes visited... stop(this.nodes_visited+1) : e instanceof Array ? // breadth-first walk... !!next(...e) : (this.nodes_visited++, r) }, false) containsZero( [1, [2, 0], 4, [[5], 6]] ) // -> 3 containsZero( [1, [2, 5], 4, [[5], 6]] ) // -> false ``` See a more usefull search in [examples](#examples)... ## Installation and loading ```shell $ npm install --save generic-walk ``` ```javascript var walk = require('generic-walk').walk ``` *Note: This module supports both AMD and node's `require(..)`** ## API `walk(getter(..)) -> walker(state, ...nodes)` Construct a reusable walker. `walk(getter(..), state) -> walker(...nodes)` Construct a reusable walker with fixed initial state. `walk(getter(..), state, ...nodes) -> result` Walk the nodes. ### The getter `getter(state, node, next(..), down(..), stop(..)) -> state` User provided function, called to process a node. `next(...nodes)` Queue `nodes` for walking. The queued nodes will get *walked* after this level of nodes is done (i.e. the `getter(..)` is called for each node on level). `down(state, ...nodes) -> state` Walk `nodes` and return `state`. The nodes will get *walked* immidiately. `stop()` `stop(state)` Stop walking and return `state`. The passed `state` is directly returned from the *walker*. *Note that `stop(..)` behaves in a similar manner to `return`, i.e. execution is aborted immidiately.* ## Examples Sum all the values of a nested array (breadth-first)... ```javascript var sum = walk(function(res, node, next){ return node instanceof Array ? // compensate for that next(..) returns undefined... next(...node) || res : res + node }, 0) sum([1, [2], 3, [[4, 5]]]) // -> 15 ...walks the nodes: 1, 3, 2, 4, 5 ``` Sum all the values of a nested array (depth-first)... ```javascript var sumd = walk(function(res, node, next, down, stop){ return node instanceof Array ? down(res, ...node) : res + node }, 0) sumd([1, [2], 3, [[4, 5]]]) // -> 15 ...walks the nodes: 1, 2, 3, 4, 5 ``` To explicitly see the paths the `sum`/`sumd` take we need to modify them a little: ```javascript var sum = walk(function(res, node, next){ this.log(node) return node instanceof Array ? // compensate for that next(..) returns undefined... next(...node) || res : res + node }, 0) var sumd = walk(function(res, node, next, down, stop){ this.log(node) return node instanceof Array ? down(res, ...node) : res + node }, 0) // define the path logger... sum.prototype.log = sumd.prototype.log = function(node){ this.path = node instanceof Array ? this.path : (this.path || []).concat([node]) } // XXX need a more natural way to catch the end of the walk... sum.prototype.onWalkEnd = sumd.prototype.onWalkEnd = function(res){ console.log('-->', this.path) return res } sum([1, [2], 3, [[4, 5]]]) // -> 15 sumd([1, [2], 3, [[4, 5]]]) // -> 15 ``` FInd first zero in tree and return it's path... ```javascript // NOTE: the only reason this is wrapped into a function is that we need // to restrict the number of items (L) this is passed to 1... var firstZero = function(L){ return walk(function(res, node, next, down, stop){ // setup... if(this.path == null){ this.path = [] node = [null, node] } var path = this.path var k = node[0] var v = node[1] return v === 0 ? // NOTE: we .slice(1) here to remove the initial null // we added in firstZero(..)... stop(path.slice(1).concat([k])) : v instanceof Object? (path.push(k), down( res, ...Object.entries(v))) : res}, false, L) } firstZero([10, 5, [{x: 1, y: 0}, 4]]) // -> ['2', '0', 'y'] ```