walk.js/README.md

201 lines
5.4 KiB
Markdown
Raw Normal View History

2018-09-28 13:59:05 +03:00
# walk.js
2018-09-28 13:59:05 +03:00
An extensible tree walk(..) framework...
## Theory and operation
This module generalizes structure traverse (*walking*). This is done via a `walk(..)` function that recieves a user-defined `getter(..)` and returns a *walker*.
`walk(getter)(state, ...nodes) -> state`
`walk(getter, state)(...nodes) -> state`
`walk(getter, state, ...nodes) -> state`
- Recieves a `getter` function a `state` and a list of `nodes`,
- Iterates through `nodes` calling the `getter(..)` per node, threading the `state` through each call,
- Returns the `state` when there are no more `nodes`.
`getter(state, node, next, down, stop) -> state`
- Recieves `state`, `node` and three control functions: `next`, `down` and `stop`,
- Can process `node` and `state`,
- Can queue nodes for walking via `next(...nodes)`
- Can walk nodes directly via `down(state, ...nodes) -> state`
- Can abbort *walking* and return a state via `stop()` or `stop(state)`
- Returns `state`,
A trivial *flat* example...
```javascript
walk(function(r, n){ return r+n }, 0, ...[1,2,3]) // -> 6
```
The above is essentially equivalent to...
```javascript
[1,2,3].reduce(function(r, n){ return r+n }, 0) // -> 6
```
And for trivial or *flat* lists `.reduce(..)` and friends are simpler and more logical.
Target use-cases:
- The input is not *flat*:
```javascript
var sum = walk(function(r, n){
return n instanceof Array ?
down(r, ...n)
: r + n }, 0)
sum( [1, [2, 3], 4, [[5], 6]] ) // -> 21
```
For reference here is a *recursive* `.reduce(..)` example:
```javascript
function sumr(l){
return l.reduce(function(r, e){
return r + (e instanceof Array ?
sumr(e)
: e) }, 0) }
sumr( [1, [2, 3], 4, [[5], 6]] ) // -> 21
```
- Need to abort the recursion prematurelly:
```javascript
// check if structure contains 0...
var containsZero = walk(function(r, e, next, down, stop){
return e === 0 ?
// target found, abort the search...
stop(true)
: e instanceof Array ?
// breadth-first walk...
!!next(...e)
: r }, false)
containsZero( [1, [2, 0], 4, [[5], 6]] ) // -> true
containsZero( [1, [2, 5], 4, [[5], 6]] ) // -> false
```
See a more usefull search in [examples](#examples)...
## Installation and loading
```shell
$ npm install --save generic-walk
```
```javascript
var walk = require('generic-walk').walk
```
*Note: This module supports both AMD and node's `require(..)`**
## API
`walk(getter(..)) -> walker(state, ...nodes)`
Construct a reusable walker.
`walk(getter(..), state) -> walker(...nodes)`
Construct a reusable walker with fixed initial state.
`walk(getter(..), state, ...nodes) -> result`
Walk the nodes.
### The getter
`getter(state, node, next(..), down(..), stop(..)) -> state`
User provided function, called to process a node.
`next(...nodes)`
Queue `nodes` for walking. The queued nodes will get *walked* after this level of nodes is done (i.e. the `getter(..)` is called for each node on level).
`down(state, ...nodes) -> state`
Walk `nodes` and return `state`. The nodes will get *walked* immidiately.
`stop()`
`stop(state)`
Stop walking and return `state`. The passed `state` is directly returned from the *walker*.
*Note that `stop(..)` behaves in a similar manner to `return`, i.e. execution is aborted immidiately.*
## Examples
Sum all the values of a nested array (breadth-first)...
```javascript
var sum = walk(function(res, node, next){
return node instanceof Array ?
// compensate for that next(..) returns undefined...
next(...node)
|| res
: res + node }, 0)
sum([1, [2], 3, [[4, 5]]]) // -> 15 ...walks the nodes: 1, 3, 2, 4, 5
```
Sum all the values of a nested array (depth-first)...
```javascript
var sumd = walk(function(res, node, next, down, stop){
return node instanceof Array ?
down(res, ...node)
: res + node }, 0)
sumd([1, [2], 3, [[4, 5]]]) // -> 15 ...walks the nodes: 1, 2, 3, 4, 5
```
FInd first zero in tree and return it's path...
```javascript
// XXX res/path threading seem unnatural here...
var __firstZero = walk(function(res, node, next, down, stop){
var k = node[0]
var v = node[1]
var path = res[0]
return v === 0 ?
// NOTE: we .slice(1) here to remove the initial null
// we added in firstZero(..)...
stop([ path.slice(1).concat([k]) ])
: v instanceof Object?
down(
[path.concat([k]), null],
...Object.entries(v))
: res }, [[], null])
var firstZero = function(value){
// NOTE: we are wrapping the input here to make it the same
// format as that of Object.entries(..) items...
return __firstZero([null, value]).pop() }
firstZero([10, 5, [{x: 1, y: 0}, 4]]) // -> ['2', '0', 'y']
```
FInd first zero in tree and return it's path...
```javascript
// same as the above but illustrates a different strategy, a bit
// cleaner but creates a walker every time it's called...
var firstZero = function(value){
return walk(
function(res, node, next, down, stop){
var k = node[0]
var v = node[1]
var path = res[0]
return v === 0 ?
// NOTE: we .slice(1) here to remove the initial null
// we added in firstZero(..)...
stop([ path.slice(1).concat([k]) ])
: v instanceof Object?
down(
[path.concat([k]), null],
...Object.entries(v))
: res },
[[], null],
// wrap the input to make it compatible with Object.entries(..)
// items...
[null, value])
// separate the result from path...
.pop() }
firstZero([10, 5, [{x: 1, y: 0}, 4]]) // -> ['2', '0', 'y']
```